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Preface

Neutrino oscillation is one of the most exciting subjects in elementary particle
physics today. It was first confirmed in 1998 by the Super-Kamiokande group from
their studies of atmospheric neutrinos. Experimental studies of neutrino oscillation
have been rapidly progressing since then, and a number of positive oscillation
results have been observed in atmospheric, solar, accelerator, and reactor neutrinos.
The implication of the existence of neutrino oscillation is that neutrinos have finite
masses and mixings, which are not accounted for in the framework of the standard
model of elementary particles. Therefore, the standard model now must be extended
to include the new information. Because the neutrino masses are extremely small, it
is considered to be unnatural to be included in the standard model similar to the way
quark and charged lepton masses are. Therefore, the neutrino oscillation is believed
to provide an important new concept that will be a big step toward the unified
understanding of elementary particle physics.

The author has been involved in neutrino oscillation experiments since 1996 as a
member of the KamLAND and later, Double Chooz groups and has witnessed the
rapid progress of neutrino oscillation studies. Along with the work for the exper-
iments, he has given topical lectures on neutrino oscillation in summer and winter
schools, as well as a number of university lectures on particle physics. While
preparing these lectures, the author felt that although there were good books on
neutrinos and neutrino oscillation, many of them were highly sophisticated and
were not necessarily useful for experimental students and beginners in this research
field.

This book is written with the intention of giving readers an intuitive image of
neutrino oscillation by showing concrete examples and numerical values of cal-
culation results. The initial conditions are specified for the general wave functions
in order to see the concrete phenomena involved. The probability formulas for the
various neutrino and antineutrino oscillation modes, with and without matter
effects, are summarized in the Appendix to provide a useful reference.

This book begins, in Chap. 1, with a brief introduction to the motivation for
neutrino oscillation study and its history. Explanation of neutrinos and their
interactions in the standard model are given in Chap. 2. Neutrino spectra from
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various neutrino sources and reaction cross sections are also calculated in Chap. 2.
The basics of the particle oscillations are introduced in Chap. 3. In Chap. 4, the
ultrarelativistic three-flavor neutrino oscillations are explained in detail and a
complete set of the oscillation probabilities for the three flavor neutrinos are cal-
culated. Chapter 4 also deals with the neutrino oscillation-related subjects, such as
the matter effect, a paradox from the measurement problem. Chapter 5 introduces
the key experiments and their results, and the three-flavor neutrino oscillation
parameters are summarized in Chap. 6. A toy model which can approximately
predict the observed neutrino mixing patterns is also shown in Chap. 6. Finally, in
Chap. 7, possibilities of future experiments are discussed, which include the mea-
surement of the CP violation parameter δ, determination of the Δm2

31 mass hier-
archy, and the absolute neutrino mass. The issues of the sterile neutrino and
neutrino-less double β decay are briefly treated in Chap. 7. In the Appendix,
a summary of the parameters and notations, a short review of the neutrino-related
Lagrangian, Dirac equation, and a complete set of the neutrino oscillation proba-
bility formulas are given. Detailed calculations or lengthy descriptions, which are
not appropriate to be in the main text, are also placed there.

While this book was being prepared, the last neutrino mixing angle, called θ13,
was finally measured and the door to future neutrino oscillation studies was opened
dramatically. The research in this field will be very active and exciting. The author
hopes ambitious students and researchers will join us and reveal the secret of the
neutrinos together.

Sendai, Japan, December 2014 Fumihiko Suekane
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Chapter 1
Introduction

Abstract In the first part of this chapter, a short introduction to the study of neutrino
oscillation is given. The importance of neutrino oscillation research is discussed; in
contrast to other particlemixings and oscillationswhich have contributedmuch to the
establishment of the standardmodel, the neutrino oscillation probes unprecedentedly
low mass scales and has not been integrated into the standard model. The latter part
of this chapter gives a brief history of neutrino oscillation studies from the prediction
of the neutrino by Pauli to the discovery of the third mixing angle θ13.Wewill see the
timeline of how current knowledge of neutrino oscillation was obtained and envisage
future possibilities.

Keywords Neutrino oscillation · Mixing angle · Neutrino mass · Matter effect ·
Mass hierarchy

1.1 Why Study Neutrino Oscillation?

Neutrino oscillation is a quantum mechanical phenomenon in which neutrino flavor
changes spontaneously to another flavor. In the simple two flavor (νμ, νe) case, the
probability that νμ changes to νe is expressed by1

Pνμ→νe = sin2 2θ sin2
m2

2 − m2
1

4Eν
L , (1.1)

where Eν is the neutrino energy, L is the distance between the neutrino source and
detector, m1 and m2 are the neutrino masses of the mass eigenstates and θ is the
mixing angle between flavor eigenstates and mass eigenstates.

The flavor eigenstates (νe, νμ) and themass eigenstates (ν1, ν2) having themasses
(m1,m2), respectively, are related as(

νe

νμ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ν1
ν2

)
. (1.2)

1 The natural unit (c → 1, � → 1) is used throughout this book.

© Springer Japan 2015
F. Suekane, Neutrino Oscillations, Lecture Notes in Physics 898,
DOI 10.1007/978-4-431-55462-2_1

1



2 1 Introduction

Since the probability (1.1) shows the oscillatory phenomenon as a function of L , it
is called the neutrino flavor oscillation, or just neutrino oscillation.

In fact, there are various quantum mechanical oscillations in elementary particle
physics from which we have learned important physics. For instance, we learned
about CP violation from (K 0 ⇔ K 0) and (B0 ⇔ B0) oscillations. The quark oscilla-
tion, (d ′ ⇔ s′) allows for the s-quark to decay, and the oscillation between the neutral
gauge fields, (B ⇔ W3) defines the photon and Z0 boson as their mass eigenstates.
The quark oscillation and the gauge boson oscillation are too quick to observe so
we can only see the averaged effects as the Cabbibo angle and the Weinberg angle.
Studies of these oscillations contributed much to the establishment of the standard
model of elementary particles. The neutrino oscillation is one such quantummechan-
ical oscillation.

The neutrino oscillation is unique among other oscillations because neutrinos
travel with ultrarelativistic velocity and the oscillation length is very long. Using
neutrino oscillations it is possible to study a very low mass scale regime which other
experiments struggle to reach. The neutrino oscillation is not incorporated into the
standard model. Like other oscillations and particle masses, the neutrino oscillations
andmasses can be understood to be generated by the transitions between the neutrino
flavors. However, we do not know the origin of the very small observed transition
amplitudes yet. It is expected that new physics will evolve from studies of neutrino
oscillations.

Books [1–9] were widely referenced while this book was being written although
they may not be cited in each part of this text.

1.2 A Brief History of Neutrino Oscillations

In 1899, nuclear β decay was discovered by E. Rutherford and in 1914, J. Chadwick
found that the electron energy spectrum in β decay is continuous. This puzzled
physicists because it seemed to violate the law of energy conservation. The concept
of the neutrino was introduced in 1930 by W. Pauli in order to explain the energy
spectrum of the β rays. A quarter century later, in 1956, the existence of the neutrino
was experimentally confirmed. A team led by F. Reines and C.L. Cowan detected
neutrinos from the Savanna River Nuclear Reactor2 [10, 11]. In 1961, a Columbia
Univ. andBNLgroup, led byL.M. Lederman,M. Schwartz and J. Steinberger, carried
out an experiment striking aluminum targets with energetic neutrinos produced in
π → μ + ν decay. They found that only muons were produced in the neutrino
induced reactions [12]. This indicates that the neutrino produced in the pion decay
is different from the one produced in the β decays in reactor. This was the discovery
of the second neutrino, now called the muon neutrino (νμ). The neutrino produced

2 At first they had planned to use neutrinos from a nuclear weapons test.
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from nuclear β decay is now called the electron antineutrino (νe). Around 1969,
R.Davis successfully detected solar neutrinos for thefirst time and found that the solar
neutrino flux was significantly less than the prediction obtained from the standard
solarmodel (SSM) [13]. After this observation, a number of experimentswere carried
out to measure the solar neutrinos with different energy thresholds and all of them
confirmed that the solar neutrino flux is significantly less than the predicted value.
The discrepancy between the measurements and the prediction was called the “solar
neutrino problem” and remained unsolved until the solar neutrino oscillation was
established.

In 1976, M. Perl discovered the τ lepton in the e+e− collider experiment at
SLAC [14] and deduced the existence of the third neutrino ντ from the large missing
energy and momentum of its decay. A quarter century later, the ντ was directly
identified by DONUT group using a nuclear emulsion detector [15].

In 1987, M. Koshiba’s Kamiokande group, together with the IMB and Baksan
groups, detected neutrinos from supernova 1987A. It was the first time that neutrinos
produced outside the solar system were observed.

In 1989, the total number of the standard neutrino flavors was determined to
be three from the energy distribution of the Z0 resonance in the LEP and SLAC
experiments [1]. This result established that the fermion family consists of three
generations and not more.

Starting in 1994, the Mainz and Troitsk groups tried to measure the νe mass using
β rays from tritium and set an upper limit of 2.2 eV.

The atmospheric neutrino anomaly was reported by the Kamiokande, IMB and
Soudan groups in 1980s. The ratio of the fluxes of νμ and νe is expected to be close
to two because two νμs and one νe are produced in the decay chain of the charged
pion which is produced by cosmic ray interactions in the atmosphere. However, the
observations showed that the ratio is more likely to be one.

In 1997, the first clear evidence of the neutrino oscillation was reported by
the Super-Kamiokande group to account for the atmospheric neutrino anomaly
[16–18]. In fact, the neutrino flavor mixing, which causes the neutrino oscillation,
was suggested byMaki et al. [19] and by Pontecorvo [20]3 long before this discovery.
From the atmospheric neutrino experiments, the oscillation parameters of Δm2

32 and
sin2 2θ23 were measured. The finite Δm2 implies that neutrinos have finite masses,
which suggests new physics.

As for the solar neutrino anomaly, the SAGE, GALLEX and GNO groups found
the deficit of neutrino fluxes produced from pp fusion in the sun using a radio-
chemical technique4 [23–27]. The Kamiokande and Super-Kamiokande groups also
confirmed the deficit in 8B neutrinos by using the elastic scattering of neutrinos and
electrons [28–36]. In these solar neutrino experiments, the deficit was found to be
energy dependent. In 1978 and 1986, L. Wolfenstein, S. Mikheyev and A. Smirnov
pointed out that the matter effect (MSW effect) could explain how the large solar

3 Pontecorvo suggested ν ⇔ ν and e−μ+ ⇔ e+μ− oscillations in 1957 and 1958 [21, 22].
4 Neutrino produces long lifetime radioactive nucleus νe +71Ga → e−+71Ge, then 71Ge is extracted
from the detector and its Auger electron is detected by a proportional counter.
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neutrino deficits could result from a small mixing angle. The MSW effect was an
attractive explanation because the neutrino mixing angle was thought to be small
from the analogy to the small quark mixing angles.

In 2002, SNO group measured neutral current interactions of solar neutrinos
using a D2O target. They showed that the total neutrino flux was the same as that
predicted by the SSM and that the observed deficits are due to the transformation of
neutrinoflavors [37]. Combining all the solar neutrino data, the oscillation parameters
supported the LargeMixingAngle (LMA) solution [38]. In 2008, the Borexino group
measured 7Be solar neutrinos and detected the deficit of solar neutrinos at ∼1 MeV.
The oscillation parameters Δm2

21 and sin
2 2θ12 have been measured by solar neutrino

experiments. From the energy dependence of the MSW effect, the mass hierarchy of
m2 > m1 has also been determined.

In 2003, the KamLAND group reported the disappearance of reactor neutrinos at
an average distance of 180km from reactors [39, 40]. They also measured Δm2

21 and
sin2 2θ12 using antineutrinos. The fact that the results of νe disappearance from the
KamLAND experiment agree with those of νe disappearance from the solar neutrino
experiments confirms the CPT symmetry.

In 2004, the K2K group measured the νμ disappearance by sending νμ from
KEK-PS to the Super-Kamiokande detector, located at 250km away. The observed
νμ disappearance is in the same parameter region as the atmospheric neutrino oscil-
lation measurements [41]. This is the first long baseline neutrino experiment using
accelerator neutrinos. In 2006, the MINOS experiment observed the νμ disappear-
ance using neutrinos produced by theNuMI beam line at Fermilab [42] andmeasured
Δm2

32 and sin
2 2θ32. They alsomeasured theνμ disappearance and confirmed theCPT

symmetry [43].
In 2010, the OPERA group observed a νμ → ντ event at Gran Sasso Lab. using

CNGS neutrino beam from CERN [44].
In 2011, T2K reported an indication of νμ → νe appearance events for the first

time [45] and Double Chooz showed an indication of a reactor neutrino deficit at a
short baseline [46]. In 2012, Daya Bay and RENO confirmed the reactor neutrino
deficit at short baselines and gave a precise measurement of θ13 [47, 48].

As of the summer of 2014, all of themixing angles andΔm2s have beenmeasured.
TheCP violating parameter δ andmass hierarchy ofm3 andm1 are the next important
targets to measure.

There have been hints of oscillation to a 4th neutrino, called the sterile neu-
trino [49]. Several experimental projects are being planned to investigate this issue.
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Chapter 2
Neutrinos and Weak Interactions
in the Standard Model

Abstract Neutrinos are produced and detected by weak interactions. It is necessary
to understand the weak interactions to calculate the energy spectrum of neutrinos
generated in sources and the reaction cross section with detector materials. In this
chapter, the weak interactions associated with the neutrinos are reviewed and neutrino
reaction probabilities that will be used in the later sections are calculated. Starting
from the wave function of the massless left-handed neutrinos, the neutrino-associated
parts of the standard model Lagrangian are introduced. Based on the Lagrangian,
the general matrix element for the four fermion interactions that include neutrino
is formulated. The spectra of neutrinos produced in the pion decay, muon decay, β
decay, and the neutrino detection cross section via νe elastic scatterings and inverse
beta decay are quantitatively calculated.

Keywords Standard model · Weak interaction · Helicity · Neutrino source · Neu-
trino interaction

2.1 Introductions

In order to investigate the neutrino oscillation in experiments, we need to understand
the properties and the reactions of neutrinos qualitatively within the standard model.
In planning experiments and understanding their data, the production mechanism of
neutrinos and its reaction cross sections with matter are particularly important. In this
chapter we focus on the weak interactions that are related to the neutrino reactions
based on the Lagrangian which is summarized in Sect. 8.2.

2.2 Quarks, Charged Leptons and Neutrinos

In the standard model of elementary particles, the six fermions which couple to the
strong interactions are called quarks

(
u
d

)
,

(
c
s

)
,

(
t
b

)
, (2.1)

© Springer Japan 2015
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8 2 Neutrinos and Weak Interactions in the Standard Model

where u, c, t quarks have charge +2/3 and d, s, b quarks have charge −1/3 in the
unit of e. The six fermions which do not couple to the strong interactions are called
the leptons (

νe

e−
)

,

(
νμ
μ−

)
,

(
ντ
τ−

)
. (2.2)

The νe, νμ and ντ do not couple to the electromagnetic interactions and are called
neutrinos. The e, μ and τ have the electric charge −1 and are called charged leptons.
All the fermions have their antiparticles,1

(
u
d

)
,

(
c
s

)
,

(
t
b

)
,

(
νe

e+
)

,

(
νμ
μ+

)
,

(
ντ
τ+

)
. (2.3)

As for the interactions, the electromagnetic interactions are mediated by the mass-
less spin-1 photon

γ. (2.4)

The weak interactions are mediated by the massive spin-1 charged and neutral
bosons,

W ±, Z0. (2.5)

The strong interactions are mediated by the massless spin-1 vector boson called
gluon,

g. (2.6)

Finally the Higgs field generates the fermion and weak boson masses.

H0. (2.7)

The three interactions have a nesting structure, illustrated as a Matryoshka doll in
Fig. 2.1. The fermions that feel the EM interactions also feel the weak interactions.
Fermions that feel the strong interactions also feel the EM interactions and therefore
feel the weak interactions.

What makes the standard model neutrinos unique is that the neutrinos do not
feel the electromagnetic, strong, nor gravitational interactions. In other words, the
neutrinos are chargeless, colorless and massless particles.

Qν = 0, gν
S = 0, mν = 0. (2.8)

Only left-handed (LH) neutrinos and right-handed (RH) antineutrinos couple to the
weak bosons. Therefore, it can be regarded that there are only LH neutrinos or RH
antineutrinos in our world.

νL, νR. (2.9)

The LH and RH denote helicity states which will be explained in the next subsection.

1 Neutrinos are treated as Dirac particle in this book unless otherwise specified.
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Fig. 2.1 Fermions are
named based on the
interactions they feel. There
is a nesting structure of
interactions like a
Matryoshka doll

u, d, s, 
c, b, t

Strong

EM

e , μ , 

Weak 

e, μ, 

2.2.1 Wave Function of Fermions

The wave function of a spin 1/2 fermion can be obtained as the solution of the Dirac
equation, [

iγμ∂μ − m
]

ψ = 0, (2.10)

where γμ are 4 × 4 matrices called gamma matrices or Dirac matrices.
We use the Dirac representation,

γ0 =
(

I 0
0 −I

)
, γk =

(
0 σk

−σk 0

)
. (2.11)

I is the identity matrix and σk are the Pauli matrices,

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.12)

From Sect. 8.4, the plane wave solution of the Dirac equation with normalization
|ψ|2 = 2E is

ψ(x) = √
E + m

[(
û

(η · σ)û

)
e−i px +

(
(η · σ)v̂

v̂

)
eipx

]
; η = p

E + m
, (2.13)

where p = (E, p) is the four momentum and E = √
p2 + m2 is the energy. û

and v̂ are two component spinors with the normalization of |û|2 + |v̂|2 = 1, which
represent the spin direction. The first term of (2.13) is the positive energy state and
the second term is the negative energy state that corresponds to the antiparticle.

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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2.2.1.1 Helicity and Spin Direction

The charged weak boson, W ± couples only to the left-handed fermions. The left-
handed (LH) and right-handed (RH) components of a state ψ are defined by

ψL ≡ γLψ ≡ 1 − γ5

2
ψ = 1

2

(
I −I

−I I

)
ψ

and ψR ≡ γRψ ≡ 1 + γ5

2
ψ = 1

2

(
I I
I I

)
ψ,

(2.14)

where

γ5 ≡ iγ 0γ 1γ 2γ 3 =
(

0 I
I 0

)
. (2.15)

Any fermion wave functions are either LH or RH states, ψ = ψR + ψL.
The LH and RH components of the positive energy state at space-time x = 0 are,

ψL(0) = 1

2

(
I −I

−I I

) √
E + m

(
u

ησu

)
=

√
E + m

2

(
(1 − ησ)u

−(1 − ησ)u

)

and ψR(0) = 1

2

(
I I
I I

)√
E + m

(
u

ησu

)
=

√
E + m

2

(
(1 + ησ)u
(1 + ησ)u

)
.

(2.16)

The probability of a fermion to be LH state is,

PL = |ψL(0)|2
|ψ(0)|2 = E + m

2

[u†(1 − ησ)2u]
2E |u|2 = 1

2
(1 − β[u†σu]). (2.17)

In the case that the velocity vector is β = β(sin θ cos φ, sin θ sin φ, cos θ) and the

spin points to +z direction u =
(

1
0

)
, the probability becomes

PL = 1

2
(1 − β cos θ). (2.18)

This means that the probability is the largest when the momentum direction is oppo-
site to the spin direction, θ = π, and the smallest when the momentum direction is
the same as the spin one, θ = 0. For ultrarelativistic case, β = 1 and PL = sin2(θ/2).
This means that the spin direction is opposite to the momentum direction. Similarly,
for the RH state of an ultrarelativistic particle, the spin is parallel to the momentum.
For a particle at rest, β = 0 and PL = PR = 1/2.

Table 2.1 summarizes the relation between the helicity and relative direction of
spin and momentum.
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Table 2.1 The probability of LH and RH states for relative direction between the spin and
momentum

P ψL ψR

s ‖ −p (1 + β)/2 (1 − β)/2

s ‖ p (1 − β)/2 (1 + β)/2

This property causes the helicity suppression of the π± decay. “s ‖ p” means s and p are parallel

2.2.2 Wave Function of Neutrinos

Since neutrino is massless and only LH state exists in the standard model, the neutrino
wave function becomes simple. By taking m → 0 in Eq. (2.13), the wave function
of a positive energy massless fermion becomes,

ψm=0(x) = √
k

(
û

k̂σû

)
e−i(kt−kx), (2.19)

where p → (k, k) is the four momentum with the relation k = |k|. The pure LH
state has to satisfy

γRψm=0(x) =
√

k

2

(
(1 + k̂σ)û
(1 + k̂σ)û

)
e−i px = 0, (2.20)

at arbitrary space-time x . Since k̂ = (sin θ cos φ, sin θ sin φ, cos θ),

(1 + k̂σ)û =
(

1 + cos θ e−iφ sin θ
eiφ sin θ 1 − cos θ

)
û = 0. (2.21)

This relation can be satisfied if

û ∝ ŝ(−k̂) =
(−ie−i(φ/2) sin(θ/2)

iei(φ/2) cos(θ/2)

)
, (2.22)

where ŝ(p̂) is the spin polarization which points toward the direction of p. Finally
the wave function of the positive energy neutrino is

ψ+
ν (x) = √

k

(
ŝ(−k̂)

k̂σŝ(−k̂)

)
e−i(kt−kx), (2.23)

where the state propagates only forward in time. Similarly the wave function of the
negative energy neutrino is

ψ−
ν (x) = √

k

(
k̂σŝ(−k̂)

ŝ(−k̂)

)
ei(kt−kx), (2.24)

where the state propagates only backward in time and we recognize it as antineutrino.
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igW
μ Wμ

iCf Lgz
μ

fL

Zμ

fL
(a)

iCf Rgz
μ

fR

fRR

Zμ

(b) (c)

fUL

f'DL

– – –

Fig. 2.2 Feynman diagram of a fL fL Z0 coupling, b fR fR Z0 coupling and c fU f ′
D W ± coupling,

where fU is the up-type fermions and f ′
D is the down-type flavor eigenstate fermions

2.3 Weak Interactions and Neutrinos

In this section, the fundamental processes of the weak interactions are described based
on the standard model Lagrangian and probabilities of various neutrino interactions
are calculated. The probabilities calculated here will be used later to understand
neutrino oscillation experiments and their results. See also the books [2–8, Chap. 1]
for details of the calculations.

2.3.1 Lagrangians for Weak Interactions

The Lagrangian of the standard model weak interaction can be obtained by set-
ting the neutrino mixing matrix as the identical matrix in the working Lagrangian
defined in Sect. 8.2. The Feynman diagrams of the weak interactions are shown in
Fig. 2.2. Figure 2.2a, b shows the neutral current interactions and Fig. 2.2c shows
the charged current interactions. We call (u, c, t, νe, νμ, ντ), up-type fermions ( fU )
and (d, s, b, e, μ, τ), down-type fermions ( fD). The weak (flavor) eigenstates
(d ′, s′, b′) are mixed with the mass eigenstates (d, s, b) by the Cabbibo-Kobayashi-
Maskawa matrix as shown in Eq. (8.25) and f ′

D is used instead of fD when necessary.2

2.3.1.1 Neutral Current Interactions

The Lagrangian of the fermion f for the neutral current interactions is,

L f f Z = −iC f LgZ [ fLγ μ fL]Zμ − iC f RgZ [ fRγ μ fR]Zμ, (2.25)

2 For neutrinos, the flavor eigenstate and mass eigenstate are identical (ν′ = ν) in the standard
model and f ′

D and fD can be interpreted equivalently.

http://dx.doi.org/10.1007/978-4-431-55462-2_8
http://dx.doi.org/10.1007/978-4-431-55462-2_8
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where gZ is the coupling constant. C f L and C f R are coefficients for the couplings
between Z0 boson and the LH and RH components of the fermions. According to
the standard model, C f R and C f L are given by

{
C fU R = −2Q f sin2 θW

C fU L = −2Q f sin2 θW + 1,

{
C fDR = −2Q f sin2 θW

C fDL = −2Q f sin2 θW − 1,
(2.26)

where Q f is the charge of the fermion f . θW is the parameter called the weak mixing
angle or Weinberg angle, which is measured to be sin2 θW ∼ 0.23.

The fermion currents in Eq. (2.25) can be modified as

fLγ μ fL = f †γ†
Lγ 0γ μγL f = f γ μγL f = f γ μ 1

2
(1 − γ 5) f,

fRγ μ fR = f γ μγR f,= f γ μ 1

2
(1 + γ 5) f,

(2.27)

and the Lagrangian (2.25) can be rewritten as

L f f Z = −igZ [ f γ μ 1

2
(C f V − C f Aγ 5) f ]Zμ, (2.28)

where C f V and C f A are called the Vector Coupling coefficient and Axial-vector
Coupling coefficient which are defined by

{
C f V ≡ C f L + C f R

C f A ≡ C f L − C f R
. (2.29)

Contrarily, an arbitrary mixture of vector and axial vector couplings can be expressed
by a combination of LH and RH couplings

a + bγ 5 = (a + b)γR + (a − b)γL. (2.30)

This means that the weak and the electromagnetic interactions can be expressed by a
sum of the LH and RH couplings, as well as by a sum of the vector and axial vector
couplings. These coefficients are summarized in Table 2.2.

Table 2.2 Z0-fermion coupling coefficients. xW = sin2 θW ∼ 0.23
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2.3.1.2 Charged Current Interactions

As for the quark-W ± coupling, the Lagrangian is given by

L f f W = −igW [ f ′
DLγ μ fUL]Wμ − igW [ fULγ μ f ′

DL]Wμ. (2.31)

Finally, the Lagrangian for the electromagnetic interactions of the fermion f is

L f f A = −i Q f e[ f γ μ f ]Aμ, (2.32)

where Aμ represents the photon field. The Feynman diagram of the EM interactions
is shown in Fig. 2.3. Since Qν = 0 for neutrinos, they do not feel EM interactions.

Within the framework of the standard model, the weak interactions and electro-
magnetic interactions have the same origin and the three coupling constants, gW , gZ ,
and electric charge e, are related as,3

e = √
2gW sin θW = gZ sin 2θW . (2.33)

In general, reaction rates are proportional to powers of (g2/4π). Expressing the
couplings in this form, the strength of the coupling between Z0 boson and neutrinos is

g2
Z

4π
= α

sin2 2θW
∼ 0.010, (2.34)

where α ≡ e2/4π ∼ 0.0073 is the electromagnetic fine structure constant. The
strength of the coupling between W ± boson and neutrino is

g2
W

4π
= α

2 sin2 θW
∼ 0.016. (2.35)

Fig. 2.3 Fermion coupling
with the photon

f

f

Aμ
ieQf

μ

3 gW = g/
√

2, gZ = g/2 cos θW , where g is the SU(2) gauge coupling constant.
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Therefore, the magnitudes of the electromagnetic and weak couplings are not so
different.

2.4 Neutrino Interaction Probabilities

The Lagrangians for the neutrino interactions are summarized as

LννZ = −igZ
[
νl Lγ μνl L

]
Zμ, (2.36)

LνlW = −igW
[
lLγ μνl L

]
Wμ − igW

[
νl Lγ μlL

]
Wμ, (2.37)

where the wave function l stands for the charged leptons such as e, μ, τ. The Feynman
diagrams which correspond to these vertexes are shown in Fig. 2.4.

The general diagram of the reaction A + B → A′ + B ′ through intermediate
gauge boson G is shown in Fig. 2.5. Its matrix element is written by

MAB→A′ B′

= −g2
G

[
ψA′(pA′)γ μγAψA(pA)

] [
ψB′(pB′)γμγBψB(pB)

]
q2 − M2

G

, (2.38)

where gG is the coupling constant between the fermion and the intermediate boson
G, pX is the four momenta of the fermion X , and q is the four-momentum transfer,
q = pA − pA′ = pB′ − pB . MG is the intermediate boson mass. γX is helicity state

Fig. 2.4 Feynman diagram
of a νl νl Z0 and b νl lW
couplings

igZ
μ

lL

lL

Zμ
igW

μ

lL

lL

Wμ

(a) (b)

μ

L

Fig. 2.5 Scattering
amplitude of fermions A and
B through intermediate
boson G

A (pA )A( pA)

G

B(pB)

igG
μ

B (pB )igG

''

''
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of the coupling between fermion X and the boson G. If G is W ±, γX = γL and for
Z0, γX = (CXV − CXAγ5)/2.

The wave function of each fermion is expressed as

ψX (x) = wX e−i pX x , (2.39)

where wX is the four component spinor of the fermion X .
For low energy interactions, |q2| � M2

G , the reaction amplitude (2.38) can be
expressed by the product of the spin and the exponential terms,

MAB→A′ B′ = g2
G

M2
G

[
wA′γμγAwA

] [
wB′γ μγBwB

]
e−i(pA+pB−pA′−pB′ )x . (2.40)

The exponential term becomes the delta function δ(pA + pB − pA′ − pB′) when
integrated with respect to x , indicating the energy and momentum conservations,
pA + pB = pA′ + pB′ .

The reaction probability is proportional to the absolute square of the matrix ele-
ment,

PAB→A′ B′ ∝ |MAB→A′ B′ |2 ∝ G2
F , (2.41)

where Fermi constant G F , defined by (2.42) is often used to express reaction prob-
abilities of the weak interactions.

G F = g2
W

2
√

2M2
W

= g2
Z√

2M2
Z

∼ 1.17 × 10−5[/GeV2]. (2.42)

2.4.1 Neutrinos from Charged Pion Decay

In accelerator based neutrino experiments, the neutrinos produced in the charged
pion decays are often used. The charged pion is a spin-0 pseudoscalar boson with
mass mπ ∼ 140 MeV. It decays with lifetime of 26 ns via the decay modes shown
below,

π± → μ± + νμ/νμ (99.99 %),

π± → e± + νe/νe (0.012 %),
(2.43)

where the values in the parentheses are their branching fractions. There is a huge
difference between the two branching fractions despite the lepton universality.

The Feynman diagram of the fundamental process of this decay is shown in
Fig. 2.6a4 and its physical process in the pion rest frame is shown in Fig. 2.6b. Since

4 Actually the two quarks in the pion are in a bound state and the free wave functions can not be
used. Nevertheless, this graphical view is useful to understand various properties of the pion decay.
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Fig. 2.6 π+ decay. a A
diagram. b Physical process
in the pion rest frame. The
z-axis is taken along the
charged lepton’s direction of
motion. The neutrino moves
to −z and its spin points to
the +z direction

eR
+  or μR

+
L

u d +

W+

(a)

+

eR
+  or μR

+
L

(b)

z

p p 

this is a two body decay, the final state leptons have definite energies and momentum.
The energies and momentum of l and ν are5

Eν = m2
π − m2

l

2mπ
, El = m2

π + m2
l

2mπ
, p = m2

π − m2
l

2mπ
. (2.44)

From the Feynman diagram Fig. 2.6a, the effective matrix element of this decay is,

Mπ+→l+νl ∝ G F [νlLγ μlL][dLγμuL], (2.45)

where l represents μ or e. The quark current is a bound system in the strong interaction
potential and can be parametrized as

[dLγμuL ] → fπqμ, (2.46)

where qμ is the four momentum transfer and fπ ∼ mπ is the structure function of
the pion, which corresponds to the overlapping density of the wave functions of the
quarks in the pion. In the pion rest frame, qμ = (mπ, 0) and the matrix element (2.45)
becomes

Mπ→lν ∝ G F fπmπ[νlLγ 0lL] = G F fπmπ[ν†
lLlL]. (2.47)

By defining the z axis as the l+ direction of motion as shown in Fig. 2.6b, the spinors
of the neutrino and the charged lepton are,

νlL = √
Eν

(
χ1

−χ1

)
, lL =

√
El + ml

2

(−(1 − ηlσz)χl
(1 − ηlσz)χl

)
, (2.48)

where χl represents the spin direction of the l+ and ηl = p
El+ml

. Therefore, the matrix
element (2.47) becomes

5 If the neutrino has a finite mass mν, the energies and the momentum are Eν = m2
π−m2

l +m2
ν

2mπ
,

El = m2
π+m2

l −m2
ν

2mπ
and p =

√
((mπ−mν)2−m2

l )((mπ+mν)2−m2
l )

2mπ
.
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Mπ→lν ∝ G F fπmπ
√

Eν(El + ml)(1 − ηl)[χ†
1χl ]. (2.49)

In this equation only χl = χ1 (the l+ spin points in the −z direction) is allowed and
the matrix element becomes

Mπ→lν ∝ G F fπmπ
√

Eν(El + ml)(1 − ηl). (2.50)

The decay rate is proportional to the absolute square of the matrix element,

�l ∝ |Mπ→lν|2 ∝ G2
F f 2

π (m2
π − m2

l )m
2
l , (2.51)

where Eqs. (2.44) are used to substitute the pion and charged lepton masses for the
energies and momentum.

By taking into account the phase space, the decay rate of the pion can be calculated
as [4, Chap. 1]

�l = G2
F

8π
f 2
π mπm2

l

(
1 − m2

l

m2
π

)2

. (2.52)

The ratio of the decay rates of eν and μν modes is, therefore,

�π→eν

�π→μν
=

(
me

mμ

)2
(

m2
π − m2

e

m2
π − m2

μ

)2

= 1.28 × 10−4. (2.53)

This agrees with the observation (2.43). The fact that the decay to muons dominates
makes it possible to obtain almost pure νμ or νμ beam in accelerator based neutrino
experiments.

The mechanism to highly suppress π → eν decay is called the helicity suppres-
sion. Using the relation between helicity and spin polarization shown in Table 2.1,
the helicity suppression can be described as follows. The produced massless neutrino
is in the LH state and its spin points 100 % to +z direction. Since the pion spin is
0, the only allowed charged lepton spin direction is −z as shown in Fig. 2.7. On the
other hand, the charged lepton is antifermion and therefore, it is in the RH state. The
probability that e+

R spin points −z is, from Table 2.1, given by

+ 0.0013% +
36%36%

z

(a) (b)

Fig. 2.7 Spin states and probabilities of a π → eν and b π → μν decays
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Pνe = 1 − βe

2
= m2

e

m2
π + m2

e

∼ 1.3 × 10−5, (2.54)

where βe is the velocity of the positron. Therefore, this decay channel is highly
suppressed.

For π → μν decay, the same discussion can be applied, but the muon velocity βμ
is much smaller than βe and the probability that μ+

R spin points to −z is much larger,

Pνμ = 1 − βμ

2
= m2

μ

m2
π + m2

μ
∼ 0.36. (2.55)

Therefore, π → νμ decays are not suppressed so much. Note that this suppression
mechanism is not a unique property of the charged current weak interactions in
which only a LH particle and a RH antiparticle can interact. It comes from the
property of helicity conservation and takes place in decays of spin-0 particles with
any combinations of vector and axial vector couplings.

2.4.2 Neutrinos from Muon Decay

The muons decay to

μ− → e− + νμ + νe,

μ+ → e+ + νμ + νe,
(2.56)

with almost 100 % branching fraction. The lifetime of the muon, 2.2 μs, is much
longer than the typical lifetime of other particles which decay weakly.

In some experiments, the muons are stopped in target or beam dump materials.
The μ− forms muonic atom with a nucleus in the material and quickly interact with
the nucleus before it decays. On the other hand, μ+ is repulsed from the nucleus and
it decays before interacting with the nucleus. These properties can be used to obtain
pure μ+-originated neutrinos.

Since this weak decay process involves only leptons, the lifetime can be accurately
calculated. From the experimental point of view, a large amount of controlled muons
can be obtained and it is possible to measure its lifetime precisely. Therefore, the
Fermi constant G F has been precisely measured from the muon lifetime.

The Feynman diagram of the muon decay is shown in Fig. 2.8. The matrix element
of the decay can be written from Eqs. (2.40) and (2.42) as,

Mμ→eνν = 2
√

2G F [eLγρνeL][νμLγρμ−
L ]. (2.57)

Ignoring the small me/mμ terms, the calculation of the decay matrix element
(2.57) shows that the energy spectrum of νμ is given by [2, Chap. 1] (Fig. 2.9),
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Fig. 2.8 The Feynman
diagram of the muon decay

μL

eR

W
eL

igW μ
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μ

Fig. 2.9 Energy spectra of
daughter particles of muon
decay. me/mμ terms are
ignored
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mμ /2

d�

d Eνμ

= G2
Fm4

μ

12π3

(
Eνμ

mμ

)2 (
3 − 4

Eνμ

mμ

)
, (2.58)

in the muon rest frame. For νe and e, the energy spectra are

d�

d Eνe

= G2
Fm4

μ

2π3

(
Eνe

mμ

)2 (
1 − 2

Eνe

mμ

)
, (2.59)

and
d�

d Ee
= G2

Fm4
μ

12π3

(
Ee

mμ

)2 (
3 − 4

Ee

mμ

)
. (2.60)

The electron from the muon decay is called the Michel electron. Note that the Michel
electron and muon neutrino have the same energy spectra. The angular distribution
of νμ with respect to the muon spin is given by,

d�

dxνμ

= G2
Fm5

μ

6π3 x5
νμ

(
1 + (1 − 4xνμ) cos2 θνμ

2

)
, (2.61)

where xνμ = Eνμ/mμ and θνμ is the νμ emission angle with respect to the muon spin.
For νe, it is
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d�

dxνe

= G2
Fm5

μ

π3 x2
νe

(1 − 2xνe ) cos2 θνe

2
, (2.62)

where xνe = Eνe/mμ and θνe is the νe emission angle with respect to the muon spin.
The total decay rate is calculated by integrating one of the energy distributions

(2.58)–(2.60).

�μ =
∫

d�

d E
d E = G2

Fm5
μ

192π3 . (2.63)

The lifetime of the muon is the inverse of the total decay rate. From the measurements
of the muon lifetime and mass, G F is precisely determined to be

G F = (1.166 378 7 ± 0.000 000 6) × 10−5 GeV−2. (2.64)

The G F value can be memorized by the empirical relation, G F ∼ (1.08)2 × 10−5

GeV−2 with a precision of 20 ppm.

2.4.3 Neutrinos from Nuclear Beta Decays

Nuclear reactors produce a huge amount of low energy νe’s, which have been used
for various neutrino studies. The reactor neutrinos are produced in the β-decays of
the unstable fission products. The fundamental reaction is the β decay of a neutron,

n → p + e− + νe. (2.65)

The Feynman diagram of this process is shown in Fig. 2.10. This diagram is similar
to the muon decay diagram shown in Fig. 2.8. However, the nucleons have internal
structure and the weak coupling to the W ± boson is modified from the muon’s. The
effective matrix element of the neutron β-decay can be written as

Mβ = √
2G F cos θC[eLγ μνeL][pγμ(1 − CAγ5)n], (2.66)

where θC is the Cabbibo angle and CA is the effective axial vector coupling coefficient
of the neutron which is measured to be CA ∼ 1.3.

Fig. 2.10 Diagram of
neutron β-decay
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Using the non-relativistic reduction for the nucleon current, the squared matrix
element can be expressed as

|Mβ|2 = 4G2
F cos2 θC Ee Eν

[
(1 + 3C2

A) + βe(1 − C2
A) cos θ

]
, (2.67)

where θ is the angle between the electron and neutrino and βe = pe/Ee. The decay
rate is then given by

�n =
∫

d3 pe

2Ee(2π)3

d3 pν

2Eν(2π)3 2πδ(Δmnp − Ee − Eν)|Mβ|2

= G2
F cos2 θC(1 + 3C2

A)

2π3

∫ Δmnp

me

d Ee Ee pe Eν pν

∼ 1.7m5
e G2

F cos2 θC(1 + 3C2
A)

2π3 ,

(2.68)

where Δmnp = mn − m p and the factor 1.7m5
e came from the integration. The mea-

sured neutron lifetime τn = 1/�n = 880 s is consistent with the expectation from
the above discussions.

In nuclear β-decays, the electron in the final state is attracted by the positive charge
of the final state nucleus and the decay rate is modified as follows:

�A = G2
F cos2 θC(〈1〉2 + C2

A〈σ〉2)

2π3

∫ ΔEi f

me

d Ee Ee pe Eν pν F(Ee, Z), (2.69)

where ΔEi f = Ei − E f and 〈1〉 and 〈σ〉 terms are called the Fermi (spin non-flip) and
the Gamow-Teller (spin-flip) matrix elements, respectively. F(Ee, Z) corresponds
to the correction factor for the final state Coulomb interactions, called the Fermi
function, given by

F(Ee, Z) = 2(1 + ξ)(2pe R)2(ξ−1)eπζ |�(ξ + iζ)|2
|�(2ξ + 1)|2 , (2.70)

where R is the radius of the nucleus, ξ = √
1 − α2 Z2 and ζ = ZαEe

pe
. The Fermi

function can be simplified for the nonrelativistic case as

F(E, Z) ∼ 2πζ
1 − e−2πζ . (2.71)

The neutrino energy spectrum is, then,

d�A

d Eν
∝ E2

ν(ΔEi f − Eν)
√

(ΔEi f − Eν)2 − m2
e F(Ee, Z). (2.72)
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2.4.4 νe− Scatterings

The neutrino-electron elastic scatterings are used for detection of solar neutrinos. In
this section, those scattering cross sections are reviewed.

The description starts with νμe− scattering since it involves a single reaction
diagram. Then the other scattering cross sections are calculated making use of the
formula developed for the νμe− scattering. Those scattering processes include only
leptons and the cross sections can be calculated precisely.

2.4.4.1 νμ + e− → νμ + e− Scattering

The Feynman diagram of νμ+e− → νμ+e− scattering process is shown in Fig. 2.11.
The target electron is supposed to be at rest. The matrix element of the scattering is,
from (2.40), given by

Mνμe = 2
√

2G F [νμL(k f )γρνμL(ki )][e(pe)γρ
(CeLγL + CeRγR)e(me, 0)]

= 2
√

2G F [νμLγρνμL] (
CeL[eLγρeL] + CeR[eRγρeR]) ,

(2.73)

where the e − Z0 coupling coefficients are, from Table 2.2,

CeR = 2 sin2 θW , CeL = −1 + 2 sin2 θW , (2.74)

respectively. The cross section is proportional to the absolute square of the scattering
amplitude and is expressed by

σνe ∝ C2
eL((k f +pe)

2−m2
e)

2+C2
eR((ki−pe)

2−m2
e)

2+CeLCeRm2
e(k f −ki )

2. (2.75)

From the detailed calculation, the differential cross section is given by

dσνμe

dy
= σ0

νe(ki )
(

C2
eL + C2

eR(1 − y)2 − CeLCeRεy
)

, (2.76)

where Te is the kinetic energy of the recoiled electron, y = Te/ki and ε = me/ki .
σ0

νe(ki ) is a reference νe scattering cross section expressed by

σ0
νe(ki ) ≡ 2G2

F meki

π
∼ 1.7 × 10−44(ki/MeV) cm2. (2.77)

Fig. 2.11 Feynman diagram
of νμe− scattering
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The total cross section can be calculated by integrating the differential cross
section (2.76) and is given by

σνμe =
∫ yMAX

0

dσνμe

dy
dy = σ0

νe(ki )

(
C2

eL + 1

3
C2

eR − 1

2
CeLCeRε

)
, (2.78)

where yMAX = 1
1+(me/2ki )

corresponds to the maximum kinetic energy that the
recoil electron can have. If we ignore the third term in (2.78), the total cross section
is approximately given by

σνμe = 1.55 × 10−45(ki/MeV) cm2. (2.79)

The cross section is proportional to the incident neutrino energy ki .
Since the electron density in the water is ∼3 × 1023/cm3, the mean free path of

10 MeV neutrinos for νμ − e scattering in water is two light years.

2.4.4.2 νμ + e− → νμ + e− Scattering

Figure 2.12 shows the Feynman diagram of νμe− scattering. Since only νμR interacts,
the matrix element of the scattering is written by

Mνμe = 2
√

2G F [νμRγρνμR](CeL[eLγρeL] + CeR[eRγρeR]). (2.80)

The antineutrino wave function in Eq. (2.80) can be rewritten using the negative
energy neutrino wave function as follows:

Mνμe = 2
√

2G F [νμL(−ki )γρνμL(−k′
f )]

(
CeL[eLγρeL] + CeR[eRγρeR]) . (2.81)

This amplitude is obtained by the substitution of the neutrino momentum k f ↔ −ki

in Eq. (2.73). Therefore, the cross section for the matrix element (2.80) can also be
obtained from the same substitution in the νμe cross section formula of (2.75):

σνμe ∝ C2
eL((pe − ki )

2 − m2
e)

2 + C2
eR((k f + pe)

2 − m2
e)

2 + CeLCeRm2
e(k f − ki )

2.

(2.82)

Fig. 2.12 Feynman diagram
of νμe− scattering
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Z0

e ee

igZ μ

igZ
μ(CeL L+CeR R)

eL

W

igW μ eLμμ eL

igW
μ

eL eL

Fig. 2.13 The Feynman diagram of νee− scattering. The neutral and charged current diagrams
have to be added

This is exactly the same formula obtained by substituting CeR ↔ CeL in (2.75).
Therefore, the form of the νμe− cross section is equivalent to the forms of the νμe−
cross section, (2.76) and (2.78), after substituting

(CeL, CeR) → (CeR, CeL). (2.83)

2.4.4.3 νe + e− → νe + e− Scattering

For the νee− scattering, the contribution from the charged current scattering has to
be added to the neutral current scattering amplitude as shown in Fig. 2.13. The matrix
element of this scattering is then given by

Mνee = 2
√

2G F
([ νeLγρνeL](CeL[eLγρeL] + CeR[eRγρeR])− [eLγρνeL][νeLγρeL]),

(2.84)
where the relative minus sign in the charged current term comes from the exchange
of the two leptons. Making use of the Fierz identity,6

[eLγρνeL][νeLγρeL] = −[νeLγρνeL][eLγρeL], (2.85)

equation (2.84) can be factorized as

Mνee = 2
√

2G F [νeLγρνeL] (
(CeL + 1)[eLγρeL] + CeR[eRγρeR]) . (2.86)

Therefore, the cross section can be obtained by substituting

(CeL, CeR) → (CeL + 1, CeR), (2.87)

in Eqs. (2.76) and (2.78).

6 See Sect. 8.1.6 and the solution of the Problem 13.9 in [4, Chap. 1].

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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2.4.4.4 νe + e− → νe + e− Scattering

The Feynman diagram for νee− scattering is shown in Fig. 2.14. The matrix element
of the scattering is given by

Mνee = 2
√

2G F

(
[νeRγρνeR](CeL[eLγρeL] + CeR[eRγρeR])−[eLγρνeR][νeRγρeL]

)
.

(2.88)

As in the previous subsection, this amplitude can be rewritten using the negative
energy neutrino wave function.

Mνee = 2
√

2G F

{ [νeL(−ki )γρνeL(−k f )]
(
CeL[eLγρeL] + CeR[eRγρeR])

+[eLγρνeL(−k f )][νeL(−ki )γ
ρeL]

}
.

(2.89)

Applying the Fierz identity again,

Mνee = 2
√

2G F [νeL(−ki )γρνeL(−k f )]
(
(CeL + 1)[eLγρeL] + CeR[eRγρeR]) .

(2.90)

The cross section can be obtained by substituting

(CeL, CeR) → (CeR, CeL + 1), (2.91)

in Eqs. (2.76) and (2.78).

2.4.4.5 Summary of νe Scattering Cross Sections

As we saw, various neutrino-electron scattering modes can be treated with the same
formula. The difference is the coefficients of the electron currents. In summary, the
general νe scattering cross section forms for dσνe/dy and σνe are

Z0

e e

igZ μ

igZ μ(CeL L+CeR R)

W
igW μ

igW μ

Fig. 2.14 The Feynman diagram of νee− scattering. The neutral and charged current diagrams
have to be added
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dσνe

dy
= σ0

νe(ki )
(

g2
L + g2

R(1 − y)2 − gLgRεy
)

,

σνe = σ0
νe(ki )

(
g2

L + 1

3
g2

R − 1

2
gLgRε

)
.

(2.92)

The reference νe cross section σ0
νe(ki ) is shown in Eq. (2.77). The effective coupling

coefficients gL/R for various νe scattering modes are summarized in Table 2.3. The
energy spectra of the νe scatterings for ki = 10 MeV neutrinos are shown in Fig. 2.15.

The numerical total cross sections for the νe scatterings are summarized in
Eq. (2.93). ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

σνμe− = σντe− ∼ 1.55 × 10−45(ki/MeV) cm2,

σνμe− = σντe− ∼ 1.34 × 10−45(ki/MeV) cm2,

σνee− ∼ 9.52 × 10−45(ki/MeV) cm2,

σνee− ∼ 3.99 × 10−45(ki/MeV) cm2.

(2.93)

Table 2.3 Z0-fermion coupling coefficients xW = sin2 θW ∼ 0.23 is used for the numerical
calculations
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Fig. 2.15 Energy spectra of νe− scatterings for incident neutrino energy ki = 10 MeV
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Since there is the following relation between the electron scattering angle and
kinetic energy,

Te = me
2 cos2 θ

ε(2 + ε) + sin2 θ
, (2.94)

the differential cross section as a function of the scattering angle is

dσνe

d cos θe
= 4σ0

νeε(1 + ε)2

× cos θ(F(θ))2(g2
L + g2

R(1 − 2ε cos2 θF(θ))2 − 2gLgRε2 cos2 θF(θ)),

(2.95)

where

F(θ) = 1

ε(ε + 2) + sin2 θ
. (2.96)

For ki � me, the electrons are scattered forward with width of δθ ∼ √
ε. Figure 2.16

shows the cos θ distribution of the scattered electron for ki = 5 and 10 MeV.

2.4.5 Inverse β Decay

The inverse process of the β decay,

νe + Z A → e+ + (Z−1) A, (2.97)

is called the inverse β decay (IBD) reaction. The IBD reaction for the proton target,

νe + p → e+ + n, (2.98)

is often used to detect reactor neutrinos. The cross section of the low energy IBD
reaction is more accurately known than those of other neutrino-nucleus interactions.

Fig. 2.16 The cos θ
distribution of electron in νe
scattering. The solid line is
for ki = 10 MeV and the
dashed line is for
ki = 5 MeV
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Fig. 2.17 Diagram of the
inverse beta decay reaction

n

eR

W

eR
+

igW μ

igW cos C μ
1
2

1 CA 5( )
p

Figure 2.17 shows the diagram of the IBD reaction. The matrix element of the IBD
reaction can be written as the same form as Eq. (2.66) and is given by

MIBD = √
2G F cos θC[eLγ μνeL][nγμ(1 − CAγ5)p]. (2.99)

From this matrix element and the neutron decay width (2.68), the IBD cross section
can be related to the neutron lifetime τn as

σIBD(Eν) = G2
F (1 + 3C2

A) cos2 θC

π
Ee pe = 2π2

1.7m5
eτn

Ee pe

∼ 1.0 × 10−43(Eν − Δmnp)

√
(Eν − Δmnp)2 − m2

e cm2,

(2.100)

where the masses and energies are expressed in MeV and Δmnp = mn − m p =
1.29 MeV. The energy dependence of the cross section is shown in Fig. 5.32. The
momentum transfer is small for reactor neutrino detection, since the typical neu-
trino energy is ∼4 MeV. Therefore, radiative and recoil corrections are small and the
uncertainty is dominated by the error of the neutron lifetime measurement.

http://dx.doi.org/10.1007/978-4-431-55462-2_5


Chapter 3
Particle Oscillations

Abstract The formalism of neutrino oscillation has complicate issues. For instance,
neutrinos always move ultrarelativistically in actual experimental conditions and the
oscillation occurs among the three flavors. In this chapter, before going into the
detail of the neutrino oscillation, we will understand the oscillations of simple cases
of two flavor particles at rest. First, the Schrödinger equation of two flavor particles is
understood as a differential equation that defines the time development of the basis
states due to flavor-transition amplitudes. The time-dependent wave functions are
derived as general solutions to the Schrödinger equation. The wave functions for
mass eigenstates and flavor eigenstates are obtained by choosing initial conditions
in the general wave function. The probability of the flavor oscillation is calculated
from the wave function which started from a specific flavor state at time t = 0. The
oscillation phenomena are also described as the interference between the diagrams
which have the same initial flavor states and the same final flavor states but different
intermediate mass eigenstates. In the course of these considerations, the relation
among the mass, the mixing and the flavor oscillation becomes clear.

Keywords Mass eigenstate · Flavor eigenstate · Quantum oscillation · Transition
amplitude · Mixing matrix · Neutrino interference

3.1 Introduction

Neutrino flavors such as νe, νμ or ντ are defined as the states which transforms to
e, μ or τ, respectively via the charged current weak interactions and they are called
weak eigenstates or flavor eigenstates. Since neutrinos interact only via the weak
interactions, neutrinos are always produced and detected as the flavor eigenstate in
experiments.

Neutrino oscillation is a phenomenon in which a certain flavor neutrino να peri-
odically changes to other flavor neutrino νβ and vice versa. This phenomenon is
caused by transition amplitude between να and νβ. Due to the transition amplitude,
the flavor eigenstates no longer have fixed masses and become superpositions of the
mass eigenstates.

An important purpose of the neutrino oscillation experiments is to measure the
transition amplitudes via the oscillation parameters and study the origin of the

© Springer Japan 2015
F. Suekane, Neutrino Oscillations, Lecture Notes in Physics 898,
DOI 10.1007/978-4-431-55462-2_3
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32 3 Particle Oscillations

transition. The quark transition amplitudes are understood to come from the Yukawa
coupling between the quarks and the Higgs field in the standard model. However,
the origin of the neutrino transition amplitudes is not understood yet.

In the following two chapters, the neutrino oscillation formulas are derived and the
resulting phenomena are studied. We start with the non-relativistic two flavor oscil-
lations in this chapter and then proceed to the ultrarelativistic three flavor neutrino
oscillations in next chapter. Subjects which are related to the neutrino oscillations,
such as the matter effect, CP violation in the lepton sector, a paradox of the measure-
ment problem, etc. are also described.

3.2 Mass in Quantum Mechanics

In the standard model, the neutrino is assumed to be massless. However, from the
discovery of neutrino oscillation, neutrinos are known to have non-zero masses now.
In quantum mechanics, the time development of the wave function of a particle at
rest with mass m is described by the equation,

d

dt
ψ(t) = −imψ(t), (3.1)

where ψ(t) is the wave function of the particle. The solution of Eq. (3.1) is given by

ψ(t) = ψ(0)e−imt . (3.2)

Another way to express the wave function is to use the Dirac ket vectors.

|ψ(t)〉 = C(t) |ψ〉 , (3.3)

where |ψ〉 is the stationary basis state andC(t) shows the timedependence of the state.
The normalization condition of the wave function requires the following relation,

|ψ(t)|2 = 〈ψ(t)|ψ(t)〉 = |C(t)|2 〈ψ|ψ〉 = |C(t)|2 = 1, (3.4)

where 〈ψ| is the Dirac bra vector and 〈ψ|ψ〉 = 1 is used. Equation (3.1) and its
solution (3.2) can be equivalently expressed by using the coefficient C(t) as follows:

Eq. (3.1) → Ċ(t) = −imC(t), (3.5)

Eq. (3.2) → C(t) = e−imt C(0). (3.6)

The time development of the coefficient, after infinitesimal time δt , can be expressed
using Eq. (3.5) as

C(t + δt) = C(t) + Ċ(t)δt = (1 − imδt)C(t). (3.7)
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im−

Fig. 3.1 Transition diagram which shows the effect of the mass. The diagram means that an
imaginary state −im|ψ(t)〉 is added to the original wave function |ψ(t)〉 per unit time

This relationmeans that as time passes, an imaginary component−im|ψ(t)〉 is added
to the original state |ψ(t)〉 per unit time due to the mass. The basis vector at time
t + δt is then,

|ψ(t + δt)〉 ≡ C(t + δt) |ψ〉 = (1 − imδt)C(t) |ψ〉 = (1 − imδt) |ψ(t)〉. (3.8)

In order to express this effect graphically, we will use the diagram shown in Fig. 3.1
and call it a “transition diagram” in this text.1

3.3 Two Flavor Oscillation at Rest

3.3.1 Transition Amplitudes

In order to understand various properties of oscillations, first we consider a particle
of two flavor states, |α〉 and |β〉, at rest.2 The wave function ψ(t) for this system can
be written by a superposition of the two basis states,

|ψ(t)〉 = Cα(t) |α〉 + Cβ(t) |β〉 , (3.9)

where |α〉 and |β〉 satisfy the normalization conditions 〈α|α〉 = 1, 〈β|β〉 = 1 and
the orthogonality condition 〈α|β〉 = 〈β|α〉∗ = 0. The absolute squares of the coeffi-
cients, |Cα(t)|2 and |Cβ(t)|2 correspond to the probability of finding states |α〉 and
|β〉 at time t , respectively, and the normalization condition for the coefficients is

|ψ(t)|2 = 〈ψ(t)|ψ(t)〉 = |Cα(t)|2 + |Cβ(t)|2 = 1. (3.10)

The wave function (3.9) can also be expressed in the matrix form

ψ(t) =
(

Cα(t)
Cβ(t)

)
, (3.11)

by defining the basis states as

|α〉 =
(
1
0

)
, |β〉 =

(
0
1

)
. (3.12)

We will use the expressions in Eqs. (3.9) and (3.11) equivalently.

1 This is not a Feynman diagram.
2 The (α, β) can be (K0, K0), (d ′, s′), (W3, B) or (νμ, νe), etc.
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iμ iμ− −

Fig. 3.2 Transition diagrams showing the two independent states |α〉 and |β〉

In general, the Schrödinger equation with interactions is expressed by

d

dt
ψ(t) = −i(H0 + HI )ψ(t), (3.13)

where H0 is the mass term and the HI is the interaction Hamiltonian. For two
component states, the mass term can be written in 2 × 2 matrix form as

H0 =
(

μα 0
0 μβ

)
, (3.14)

where μα and μβ are the masses of the |α〉 and |β〉 states in the case where HI = 0.
In this case, the Schrödinger equation (3.13) reduces to the two separate equations

{
Ċα(t) = −iμαCα(t)

Ċβ(t) = −iμβCβ(t).
(3.15)

We can immediately solve (3.15) and obtain

{
Cα(t) = Cα(0)e−iμαt

Cβ(t) = Cβ(0)e
−iμβt .

(3.16)

Therefore, the wave function is written as

|ψ(t)〉 = Cα(0)e
−iμαt |α〉 + Cβ(0)e

−iμβt |β〉 . (3.17)

This means that the two states |α〉 and |β〉with masses μα and μβ exist independently
in the system. The transition diagram for the two independent systems can be shown
as in Fig. 3.2.

In some situations, there are interactions which transform |α〉 to |β〉, and vice
versa,3

|α〉 ⇔ |β〉 . (3.18)

The transition diagram between the different flavors is shown in Fig. 3.3, where τ
represents the strength of the transition. We refer this τ as the transition amplitude in

3 For example, K 0 ⇔ K 0, d ′ ⇔ s′, B ⇔ W3 or νμ ⇔ νe.
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i−

Fig. 3.3 Cross-transition amplitude between |α〉 and |β〉

this text. Due to the transition, the coefficients of the basis states |α〉 and |β〉 change
as in Eq. (3.19) after infinitesimal time δt ,

{
Cα(t + δt) = Cα(t) − iτδtCβ(t)

Cβ(t + δt) = Cβ(t) − iτδtCα(t).
(3.19)

The wave function at t + δt is, from (3.9),

|ψ(t + δt)〉 = Cα(t + δt) |α〉 + Cβ(t + δt) |β〉
= Cα(t)(|α〉 − iτδt |β〉) + Cβ(t)(|β〉 − iτδt |α〉). (3.20)

This means we can interpret that the basis vector changes depending on time;

{
|α(t + δt)〉 = |α(t)〉 − iτδt |β(t)〉
|β(t + δt)〉 = |β(t)〉 − iτδt |α(t)〉 . (3.21)

Both points of view for the time development of the wave function, (3.19) and (3.21),
are equivalent.

For δt → 0, Eq. (3.19) is equivalent to the following differential equation,

d

dt

(
Cα(t)
Cβ(t)

)
= −i

(
0 τ
τ 0

)(
Cα(t)
Cβ(t)

)
. (3.22)

The transition matrix corresponds to the interaction Hamiltonian HI defined in
Eq. (3.13),

HI =
(
0 τ
τ 0

)
. (3.23)

Comparing Figs. 3.2 and 3.3, the mass corresponds to the transition amplitude to
the original flavor. We will call the transition in Fig. 3.2 self transition and that in
Fig. 3.3 cross transition in this text.

In order to see the effect of the cross transitions, we set H0 = 0 in (3.13). The
Schrödinger equation becomes Eq. (3.22) and we obtain the following separate dif-
ferential equations,

{
d
dt (Cα(t) + Cβ(t)) = −iτ(Cα(t) + Cβ(t)),
d
dt (Cα(t) − Cβ(t)) = iτ(Cα(t) − Cβ(t)).

(3.24)
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These equations can be solved to give

{
Cα(t) + Cβ(t) = (Cα(0) + Cβ(0))e

−iτt

Cα(t) − Cβ(t) = (Cα(0) − Cβ(0))e
iτt .

(3.25)

By defining (
C−
C+

)
= 1√

2

(
1 −1
1 1

) (
Cα(0)
Cβ(0)

)
, (3.26)

Cα(t) and Cβ(t) can separately be obtained as

⎧⎨
⎩

Cα(t) = 1√
2
(C+e−iτt + C−eiτt )

Cβ(t) = 1√
2
(C+e−iτt − C−eiτt ).

(3.27)

Therefore, the wave function (3.9) can be written as

|ψ(t)〉 = 1√
2
(C+e−iτt + C−eiτt ) |α〉 + 1√

2
(C+e−iτt − C−eiτt ) |β〉

= |α〉 + |β〉√
2

C+e−iτt + |α〉 − |β〉√
2

C−eiτt .

(3.28)

Thewave function shows various physical phenomena depending on the initial values
of Cα/β(0) or C±.

3.3.1.1 The Mass Eigenstate

If the initial values of the coefficients C± are given by

(C−, C+) = (0, 1) or (1, 0), (3.29)

the corresponding wave functions are, from Eqs. (3.28),

|ψ±(t)〉 = |±〉 e∓iτt , (3.30)

where the basis states |±〉 are defined by

(|−〉
|+〉

)
= 1√

2

(
1 −1
1 1

)(|α〉
|β〉

)
. (3.31)

Equation (3.30) means that the basis states |±〉 correspond to the mass eigenstates
with masses of

m± = ±τ, (3.32)
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respectively. Equation (3.31) shows that the mass eigenstate is a mixture of the flavor
eigenstates and vice versa. The matrix in Eq. (3.31) is called the mixing matrix.
An important remark from this example is that the transition amplitude τ between
different flavors becomes the mass of the particle in the end.

3.3.1.2 Flavor Eigenstate and Oscillation

If the system is in the pure |α〉 state at t = 0, the initial condition is

(Cα(0), Cβ(0)) = (1, 0), or (C−, C+) = (1/
√
2, 1/

√
2). (3.33)

In this case, the wave function (3.28) is determined to be,

|ψ(t)〉 = cos τt |α〉 − i sin τt |β〉 . (3.34)

This shows that state |β〉 is spontaneously generated and the probability of finding
the flavor |β〉 at time t is

Pα→β(t) = | 〈β|ψ(t)〉 |2 = sin2 τt. (3.35)

This is the simplest example of particle oscillation. Since Eq. (3.32) gives a relation
τ = (m+ − m−)/2, the oscillation probability (3.35) can also be expressed as

Pα→β(t) = sin2
m+ − m−

2
t. (3.36)

The angular velocity of the oscillation corresponds to the mass difference.4

3.3.2 General Hamiltonian and Mass Eigenstate

Weconsider here the general two component Schrödinger equationwith finite H0 and
HI . From the explicit form of the Hamiltonians (3.14) and (3.23), the Schrödinger
equation (3.13) is written as,

d

dt

(
Cα
Cβ

)
= −i

(
μα τ
τ μβ

) (
Cα
Cβ

)
. (3.37)

4 In this particular case, m+ + m− = 0 and the oscillation probability can also be expressed as
Pα→β(t) = sin2 m±t . However, we will treat more general case later in which m+ + m− �= 0. For
such cases, Eq. (3.36) still holds.
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Since Eq. (3.37) shows the internal state transition between |α〉 and |β〉, we call it
the state equation in this text. To solve the state equation, we split the Hamiltonian
in Eq. (3.37) into the average mass and the transition terms,

d

dt

(
Cα

Cβ

)
= −i

[
μαβ

(
1 0

0 1

)
+

(−Δμβα/2 τ
τ Δμβα/2

)] (
Cα

Cβ

)
, (3.38)

where μαβ and Δμβα are defined by

μαβ = μα + μβ

2
and Δμβα = μβ − μα. (3.39)

The average mass term represents the absolute mass scale and the transition term
generates the oscillation. The solution for Eq. (3.38) can be factored into a plane
wave component and an oscillation component, as given by

(
Cα(t)

Cβ(t)

)
= e−iμαβt

(
Bα(t)

Bβ(t)

)
, (3.40)

where Bα(t) and Bβ(t) are the solutions of

d

dt

(
Bα(t)

Bβ(t)

)
= −i

(−Δμβα/2 τ
τ Δμβα/2

) (
Bα(t)

Bβ(t)

)
. (3.41)

Normalizing the transition matrix, the equation (3.41) can be rewritten as follows:

d

dt

(
Bα

Bβ

)
= −iωτ

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)(
Bα

Bβ

)
, (3.42)

where ωτ and θ are defined by

ωτ =
√(

Δμβα/2
)2 + τ2 and tan 2θ = 2τ

Δμβα
. (3.43)

As we will see later, θ and ωτ are measurable parameters in oscillation experiments.
θ is called the mixing angle and ωτ corresponds to the angular velocity of the oscil-
lation. Figure3.4, which we call the mixing triangle in this text, shows the relations
between these parameters and the transition amplitudes.

From Sect. 8.3, by using the unitary matrix

U =
(

cos θ sin θ
− sin θ cos θ

)
, (3.44)

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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μ μ( ) 2

2

Fig. 3.4 The mixing triangle showing the relation between transition amplitudes (μα, μβ, τ) and
the oscillation parameters (θ, ωτ)

we can show
U †

(− cos 2θ sin 2θ
sin 2θ cos 2θ

)
U =

(−1 0
0 1

)
. (3.45)

Therefore, applying U † from the left, Eq. (3.42) becomes

d

dt
U †

(
Bα
Bβ

)
= −iωτ

(−1 0
0 1

)
U †

(
Bα
Bβ

)
. (3.46)

The solution of Eq. (3.46) is

(
Bα(t)
Bβ(t)

)
= U

(
eiωτt 0
0 e−iωτt

)
U †

(
Bα(0)
Bβ(0)

)

=
(

eiωτt cos2 θ + e−iωτt sin2 θ (eiωτt − e−iωτt ) cos θ sin θ
(eiωτt − e−iωτt ) cos θ sin θ eiωτt sin2 θ + e−iωτt cos2 θ

) (
Bα(0)
Bβ(0)

)
.

(3.47)

The wave function becomes,

|ψ(t)〉 = (cos θBβ(0) − sin θBα(0))(cos θ |β〉 − sin θ |α〉)e−i(μαβ+ωτ)t

+ (cos θBα(0) + sin θBβ(0))(cos θ |α〉 + sin θ |β〉)e−i(μαβ−ωτ)t

= C− |−〉 e−im−t + C+ |+〉 e−im+t ,

(3.48)

where
(|−〉

|+〉
)

= U

(|α〉
|β〉

)
,

(
C−
C+

)
= U

(
Bα(0)
Bβ(0)

)
, m± = μαβ ± ωτ. (3.49)

The basis states |±〉 are themass eigenstateswithmassesm±, respectively. Therefore,
U corresponds to the mixing matrix because it mixes the mass eigenstates and the
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flavor eigenstates. It is noted that the coefficients for the mass eigenstates and the
flavor eigenstates are connected with the same mixing matrix.

3.3.3 Flavor Oscillation

If we rewrite (3.48) in terms of the flavor eigenstates,

|ψ(t)〉 = (C+ sin θ e−im+t + C− cos θ e−im−t ) |α〉
+ (C+ cos θ e−im+t − C− sin θ e−im−t ) |β〉 . (3.50)

If the system is in a pure |α〉 state at time t = 0,

(
Cα(0)
Cβ(0)

)
= U

(
C−
C+

)
=

(
1
0

)
. (3.51)

In this case the flavor coefficients are,

(
Cα(t)
Cβ(t)

)
=

(
cos2 θ e−im−t + sin2 θ e−im+t

sin θ cos θ (e−im+t − e−im−t )

)
. (3.52)

The probability of finding the |β〉 state at time t is

Pα→β(t) = | 〈β|ψ(t)〉 |2 = |Cβ(t)|2 = sin2 2θ sin2
m+ − m−

2
t, (3.53)

showing that the probability oscillates in time with the angular velocity m+ − m− =
2ωτ

5 and amplitude sin2 2θ. The mixing angle and oscillation frequency are inde-
pendent of the absolute mass scale μαβ. This means that the absolute mass scale
can not be measured by neutrino oscillations. From the mixing angle and oscillation
frequency, a relative pattern of the transition amplitudes can be studied.

3.3.4 Oscillation as Interference

As shown in Fig. 3.5, the |α〉 → |β〉 transition probability is calculated from the
absolute square of the sum of the two indistinguishable diagrams in which the initial
state is |α〉 and the final state is |β〉. The diagram on the left in Fig. 3.5 shows that the
mass eigenstate |+〉 propagates intermediately and the diagram on the right shows
that |−〉 propagates intermediately. Those mass eigenstates acquire the phases of
e−im±t after the time t . Since the mass eigenstates and flavor eigenstates mix as

5 sin2 m+−m−
2 t = (1 − cos(m+ − m−)t)/2.
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Fig. 3.5 The |α〉 → |β〉
transition probability.
The left diagram shows
that |+〉 state propagates
intermediately and the right
diagram shows that |−〉 state
propagates intermediately.
The mass eigenstates acquire
phases of e−im±t as time
passes

+
sin

cos

cos

sin
e im+t + e im t

2

sin cos e im+t

P t( ) =

sin cos e im t

in Eq. (3.49), the |+〉 component of |α〉 and |β〉 are sin θ and cos θ, respectively.
Therefore, the amplitude of the diagram on the left is

M+ = sin θ cos θ e−im+t . (3.54)

Similarly, the amplitude of the diagram on the right is

M− = − sin θ cos θ e−im−t . (3.55)

The oscillation probability is the absolute square of the sum of the two amplitudes,

Pα→β(t) = |M+(t) + M−(t)|2 = sin2 2θ sin2
m+ − m−

2
t, (3.56)

which agrees with the result in (3.53) as expected. From this view, it becomes appar-
ent that the oscillation is caused by the interference between the two diagrams.
They have different phases, which develop as a result of the mass difference while
the particle propagates in time. The oscillation amplitude reflects the product of the
mixing parameters from |α〉 to |±〉 and from |±〉 to |β〉. The angular velocity of
the oscillation corresponds to the phase difference developed per unit time.

3.3.5 Mathematical Formulation of Oscillation

The formulation of the flavor oscillation is summarized in this section. The wave
function form is,

|ψ(t)〉 =
∑

α
Cα(t) |α〉 . (3.57)

The Schrödinger equation (3.13) is written as

Ċ = −iT C, (3.58)
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where C is a column matrix; C = (Cα Cβ . . . )T and T is the transition matrix
between the flavor eigenstates. Equation (3.58) can be explicitly written as in
Eq. (3.37) for the two flavor case. From the conservation of probability,T is required
to be Hermitian.

It is always possible to make the matrix U †T U real-diagonal by choosing a
certain unitary matrix U ,

M = U †T U, (3.59)

where the elements of M are Mi j = mi δi j . The elements of U and M are combina-
tions of the elements of the transition matrix T .

Using the unitary matrix U , Eq. (3.58) can be modified to,

U †Ċ(t) = −i
[
U †T U

]
U †C(t) = −i MU †C(t). (3.60)

If we define coefficients D = (D1 D2 . . . )T as

D(t) = U †C(t), (3.61)

the state equation (3.60) becomes,

Ḋ(t) = −i M D(t). (3.62)

Since M is diagonal, the solution can be obtained easily in the form

D(t) = W (t)D(0), (3.63)

where W (t) is also a diagonal matrix with elements Wi j (t) = e−imi t δi j . Finally, the
flavor coefficients at time t is obtained as follows:

C(t) = U D(t) = U W (t)D(0) = [U W (t)U †]C(0). (3.64)

Equation (3.64) can be expressed using the elements of the matrices as follows,

Cξ(t) =
∑
i jζ

Uξi Wi j (t)U
∗
ζ j Cζ(0) =

∑
ζ

[∑
i

e−imi tUξiU
∗
ζi

]
Cζ(0). (3.65)

If the initial state is pure |α〉, Cα(0) = 1 and other coefficients are 0. In this case,

Cξ(t) =
∑

i

e−imi tUξiU
∗
αi . (3.66)

The wave function at time t is,

|ψα(t)〉 =
∑

ξ

Cξ(t) |ξ〉 =
∑
iξ

e−imi tUξiU
∗
αi |ξ〉 . (3.67)



3.3 Two Flavor Oscillation at Rest 43

The probability of being |β〉 state at time t is,

Pα→β(t) = | 〈β|ψα(t)〉 |2 =
∑

i j

UαiU
∗
βiU

∗
β jUα j e

−i(m j −mi )t . (3.68)

We can measure U and M experimentally and obtain T using Eq. (3.59) as

T = U MU †, (3.69)

and can study its origin.
For the two flavor case, from Eq. (3.69) together with Eq. (3.41), the relations

between transition amplitudes and measurable parameters are

τ = (m+ − m−) sin θ cos θ = ωτ sin 2θ (3.70)

μα = m− cos2 θ + m+ sin2 θ = m − ωτ cos 2θ (3.71)

μβ = m+ cos2 θ + m− sin2 θ = m + ωτ cos 2θ, (3.72)

where ωτ = m+−m−
2 and average mass m = m++m−

2 . Equation (3.70) indicates that
oscillation experiments measure the cross-transition amplitude τ. Equations (3.71)
and (3.72) show that the self-transition amplitudes μα and μβ can be determined by
combining the absolute masses and the oscillation parameters. There are also the
following useful relations:

μα + μβ = m+ + m−,
μβ − μα = (m+ − m−) cos 2θ.

(3.73)

The general wave function (3.57) can be expressed by D(t) as follows:

|ψ(t)〉 =
∑

α
Cα(t) |α〉 =

∑
αk

Uαk Dk(t) |α〉 =
∑

k

Dk(0)e
−imk t

[∑
α

Uαk |α〉
]
.

(3.74)
If we define a new basis vector as

|k〉 ≡
∑

α
Uαk |α〉, (3.75)

The wave function (3.57) becomes,

|ψ(t)〉 =
∑

k

Dk(0) |k〉 e−imk t . (3.76)

This means that |k〉 is a mass eigenstate. The mixing matrix elements can be
expressed as

Uαk = 〈α|k〉 . (3.77)



Chapter 4
Neutrino Oscillation

Abstract In this chapter, oscillations of the relativistic three flavor neutrinos are
discussed. First, two-flavor relativistic oscillation formula is derived using the solu-
tion of the Dirac equation. It is confirmed that under realistic calculations, resulting
oscillation formulas agree with the standard formula based on a simple assumption.
Next, the effective state equation for relativistic neutrinos are defined and the com-
plete set of the relativistic three flavor neutrino oscillation formulas are derived. The
standard parametrization of the three flavor mixing matrix that uses θ12, θ23, θ13 and
δ, is introduced. Oscillation formula for the antineutrino is derived from the CPT
invariance. Correspondence between the mass number mi and neutrino flavor να is
discussed and the concept of the mass hierarchy is introduced. In order to understand
the solar neutrino data and plan experiments to detect CP violation and mass hierar-
chy, the neutrino oscillation in matter is formulated. Finally a paradox in oscillation
measurements is explained.

Keywords Relativistic oscillation · Three flavor oscillation · Antineutrino oscilla-
tion · MNSP matrix · Matter effect · Measurement problem

4.1 Oscillation of Relativistic Two Flavor Fermions

So far we have studied the oscillation of two flavor particles at rest. However, the
masses of neutrinos are extremely small and neutrinos always travel ultrarelativisti-
cally in actual experimental conditions. Therefore, a formulation of the oscillation
for the relativistic neutrinos is necessary.

4.1.1 Oscillation of Dirac Neutrinos

The wave function of positive energy two-flavor neutrino can be generally exp-
ressed as

|ψν(x)〉 = νe(x) |νe〉 + νμ(x) |νμ〉 = ν− |ν−〉 e−ik−x + ν+ |ν+〉 e−ik+x , (4.1)

© Springer Japan 2015
F. Suekane, Neutrino Oscillations, Lecture Notes in Physics 898,
DOI 10.1007/978-4-431-55462-2_4
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where |νe〉 and |νμ〉 are flavor eigenstates and |ν±〉 are mass eigenstates. We assume
that there is a cross-transition amplitude τ between |νe〉 and |νμ〉 just like the quark
case. The Dirac equations with the transitions can be obtained by substituting α and
β in Eq. (8.32) by e and μ,

{
iγρ∂

ρνe − μeνe − τνμ = 0

iγρ∂
ρνμ − μμνμ − τνe = 0,

(4.2)

where the transition amplitudes are also substituted as μαα → μe, μββ → μμ and

μαβ = μβα → τ.1 Following the same procedure in Sect. 3.3.2, we mix the νe and
νμ with the mixing angle θ and obtain energy eigenstates ν+ and ν−,

(
ν−
ν+

)
=

(
cos θ − sin θ
sin θ cos θ

)(
νe

νμ

)
, (4.3)

where θ is defined by

tan 2θ = 2τ
μμ − μe

. (4.4)

Using ν±, the Dirac equations (4.2) can be separated into the following two inde-
pendent equations. {

iγρ∂
ρν+ − m+ν+ = 0

iγρ∂
ρν− − m−ν− = 0

, (4.5)

where

m± = μμ + μe

2
±

√(μμ − μe

2

)2

+ τ2. (4.6)

The positive energy solutions for the Dirac equations (4.5) are, using Eq. (8.70),

ν±(x) = √
E± + m±

(
u±

η±σu±

)
e−ik±x , (4.7)

where k± = (E±, p±). Equation (4.7) indicates that a space-time development of
the wave function is

ν±(x) = ν±(0)e−ik±x . (4.8)

Therefore, the wave functions of the flavor eigenstates at the space-time point x are,
using Eq. (4.3),

1 For two flavor oscillation, the imaginary phase does not appear in the oscillation probability and
it is omitted from the first.

http://dx.doi.org/10.1007/978-4-431-55462-2_8
http://dx.doi.org/10.1007/978-4-431-55462-2_3
http://dx.doi.org/10.1007/978-4-431-55462-2_8
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(
νe(x)

νμ(x)

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν−(x)

ν+(x)

)

=
(

cos θ sin θ
− sin θ cos θ

)(
e−ik−x 0

0 e−ik+x

)(
cos θ − sin θ
sin θ cos θ

)(
νe(0)

νμ(0)

)

=
(

e−ik−x cos2 θ + e−ik+x sin2 θ (e−ik+x − e−ik−x ) sin θ cos θ
(e−ik+x − e−ik−x ) sin θ cos θ e−ik−x sin2 θ + e−ik+x cos2 θ

)(
νe(0)

νμ(0)

)
.

(4.9)

If the neutrino state is in the pure νμ state at space-time x = 0, the initial condition is

νe(0) = 0, (4.10)

and the coefficients of νe and νμ basis states are,

{
νe(x) = (e−ik+x − e−ik−x ) sin θ cos θνμ(0)

νμ(x) = (e−ik−x sin2 θ + e−ik+x cos2 θ)νμ(0).
(4.11)

In this case, the wave function becomes

ψν(x) = ((e−ik+x − e−ik−x ) sin θ cos θ |νe〉
+ (e−ik−x sin2 θ + e−ik+x cos2 θ) |νμ〉)νμ(0).

(4.12)

The probability that νμ state turns into νe at space-time x is

Pνμ→νe(x) = |νe(x)|2
|ψν(0)|2 = sin2 2θ sin2 (k+ − k−)x

2
. (4.13)

4.1.2 Oscillation Phase

The treatment of the oscillation phase in Eq. (4.13),

� = (k+ − k−)x

2
= (E+ − E−)t − (p+ − p−)x

2
(4.14)

requires some care. Now we assume that the momenta are parallel to the +z direction
and p± = (0, 0, p±). If the energies happen to be the same, E+ = E−(= E), the
oscillation phase � becomes

� = 1

2

(√
E2 − m2− −

√
E2 − m2+

)
z ∼ m2+ − m2−

4E
z. (4.15)
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If instead the two momenta happen to be the same, p+ = p−(= p), the oscillation
phase becomes

� = 1

2

(√
p2 + m2+ −

√
p2 + m2−

)
t ∼ m2+ − m2−

4p
t. (4.16)

Since practically we can consider t = z and p = E for the ultrarelativistic neutrino
case, Eqs. (4.15) and (4.16) can be considered as identical.2 However, in actual
processes of neutrino production, such as pion decays, both the energies and momenta
of ν− and ν+ are different from each other. The relation of (E−, p−) and (E+, p+)

can not be determined from the general solution and it is necessary to concretely
consider how the neutrinos were produced to determine the initial condition. To see
a more realistic situation, we consider a case that the neutrino is produced in the
decay of particle X ,

X → ν± + Y, (4.17)

where Y can be a single particle, like the pion decay or a multi-particle system, like
the β or muon decays. In such decays, the neutrino energy and momentum in the rest
frame of X are given by,

E± ∼ E0

(
1 − m2±

2MX E0

)
, p± ∼ E0

(
1 − 1

2

(
1 + E0

MX

)
m2±
E2

0

)
, (4.18)

where MX is the mass of X and E0 is the neutrino energy in case the neutrino is
massless,

E0 = M2
X − M2

Y

2MX
. (4.19)

MY is the invariant mass of the Y system. If the decay is three-body decay or more,
MY differs for event by event. Substituting the p± and E± in Eq. (4.14) by Eqs. (4.18),
the oscillation phase is

� ∼ Δm2

4E0

(
1 + E0

MX

)
z − Δm2

4MX E0
t ∼ Δm2

4E0
z. (4.20)

The oscillation phase depends only on the squared neutrino mass difference and the
neutrino energy. The information of the decay of X , such as a possible variation of
MY , is included in the neutrino energy and we need not explicitly care about how the
neutrino was produced when treating the neutrino oscillation.

2 Rigorously speaking, if there is no ambiguity in the momentum, position becomes ambiguous due
to the uncertainty principle and the position dependence of the oscillation can not be observed.
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4.1.3 Wave Packet Treatment

Usually, the elementary particles we observe are localized in space and have to be
treated as wave packet. The wave packet is expressed by superposition of plane waves
with slightly different momenta. For simplicity, we consider a one dimensional wave
packet for the neutrino with mass mν. The wave function of the wave packet is
expressed by

Ψ(t, z) =
∫

a(k)ei(kz−E(k)t)dk, (4.21)

where a(k) is a momentum distribution with narrow momentum spread and E(k) =√
m2

ν + k2. Now we assume that the momentum distribution of |a(k)|2 is a Gaussian

with mean momentum k̂ and the standard deviation σk ,

a(k) = 1√√
2πσz

exp

[
− (k − k̂)2

4σ2
k

]
. (4.22)

The neutrino is ultrarelativistic and we assume

σk � k̂. (4.23)

The integration (4.21) can be performed,3

Ψ(t, z) ∼ 1√√
2πσz

exp

[
− (z − β̂t)2

4σ2
z

]
exp

[
i(k̂z − Êt)

]
, (4.24)

where σz = 1/(2σk), Ê =
√

k̂2 + m2
ν and mean velocity is

β̂ = k̂

Ê
∼ 1 − m2

ν

2Ê2
. (4.25)

The probability density at space-time (t, z) is,

|Ψ(t, z)|2 = 1√
2πσz

exp

[
− (z − β̂t)2

2σ2
z

]
. (4.26)

This state exists only around z = β̂t with width of σz , which describes a localized
particle that travels with velocity β̂.

3 See Sect. 8.4.3 for derivation.

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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Fig. 4.1 Overlap of the two
wave packets L = m2L

2E 2

z

z

L

ˆ 

ˆ 

For neutrinos, the flavor eigenstate is a superposition of the mass eigenstates, and
each mass eigenstate has to be treated as a wave packet with its own mass. The wave
packets of different mass eigenstates generally have different velocities and they will
separate from each other after traveling some distance. The neutrino oscillation can
be treated as the interference of the overlap of the wave packets. Figure 4.1 shows a
sketch of the separation of the two wave packets. The distance between the two peaks
of the wave packets with masses m− and m+ after traveling distance L is given by,

ΔL = Δβ̂L = Δm2

2Ê2
L, (4.27)

where Δβ̂ is the difference of the average velocities (4.25),

Δβ̂ = β̂− − β̂+ = m2+ − m2−
2Ê2

= Δm2

2Ê2
. (4.28)

The ratio of the distance between the two peaks and the width of the wave packets
is,

ΔL

σz
= Δm2L

2Ê2σz
. (4.29)

Usually, we set up the baseline of the experiments such a way that

L ∼ 2πÊ

Δm2 , (4.30)

which gives
ΔL

σz
∼ π

Êσz
∼ 2πσk

k̂
� 1, (4.31)

from the assumption (4.23). Therefore, the two wave packets overlap significantly
and the oscillation can be observed.
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4.1.4 Oscillation of the Wave Packet

If a neutrino is produced as νμ, the wave function of the wave packets at the space-
time x is, from the analogy to Eqs. (4.1) and (4.3) after setting νe(0) = 0,

|Ψ(x)〉 = N
(
− sin θ e−(Δẑ−)2

ei�− |ν−〉 + cos θ e−(Δẑ+)2
ei�+ |ν+〉

)
, (4.32)

where N = 1/

√√
2πσz is the normalization constant and

Δẑ± = z − β±t

2σz
, �± = k±z − E±t. (4.33)

Following the same procedure used to derive Eq. (3.35), the probability of detecting
νe at a space-time point x is,

| 〈νe|Ψ(x)〉 |2 =
∣∣∣∣ N

2
sin 2θ

(
e−(Δẑ+)2

ei�+ − e−(Δẑ−)2
ei�−

)∣∣∣∣
2

= N 2 sin2 2θ
4

(
e−2(Δẑ+)2 + e−2(Δẑ−)2 − 2e−((Δẑ+)2+(Δẑ−)2) cos(Δkz − ΔEt)

)
,

(4.34)
where Δk = k− − k+ and ΔE = E− − E+.

In actual experiments, we place a neutrino detector at a distance L from the
neutrino source and measure the incoming neutrinos continuously. Therefore, the
probability of finding νe events corresponds to the integral of (4.34) over time,4

Pνμ→νe(L) ∼
∫ +∞

−∞
| 〈νe|Ψ(t, L)〉 |2dt

/∫ +∞

−∞
|Ψ(t, L)|2dt

∼ sin2 2θ
2

(
1 − cos [(Δk − ΔE) L] exp

[
−1

8

[(
ΔE

σk

)2

+
(

ΔβL

σz

)2
]])

,

(4.35)

where non-leading O((mi/E)2) terms are ignored and approximations, β =
(β− + β+)/2 ∼ 1, β2 = (β2

− + β2
+)/2 ∼ 1 are used.

Since ΔL = ΔβL is the difference between the peak positions of the two wave
packets, the exp[−(Δβ)2L2/8σ2

z ] term corresponds to the reduction due to the sepa-
ration of the two wave packets in space. The power of this term is close to 0 as we saw
in (4.31). The exp[−(ΔE)2/8σ2

k] term represents the reduction from the difference
between the neutrino energies in the two mass eigenstates. If the neutrino is produced
in the decay of particle X as in Eq. (4.17) and detected at a distance L ∼ 2πE/Δm2,

4 See Sect. 8.4.3.1 for derivation.

http://dx.doi.org/10.1007/978-4-431-55462-2_3
http://dx.doi.org/10.1007/978-4-431-55462-2_8
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ΔE

σk
∼ Δm2

2MX σk
∼ 2πE

MX

σz

L
� 1. (4.36)

where the fact that σz is much smaller than the baseline L is used. Since β is close
to 1, the phase of the cos term in Eq. (4.35) is, using Eqs. (4.18),

(Δk − ΔE)L ∼ Δm2L

2E0
. (4.37)

Finally, the transition probability becomes,

Pνμ→νe(L) = sin2 2θ
2

(
1 − cos

(
Δm2L

2E0

))
= sin2 2θ sin2

(
Δm2L

4E0

)
, (4.38)

which agrees with the formula derived in the previous sections.

4.1.5 Effective Treatment of Relativistic State Equation

The wave function of a moving particle can be obtained from the Lorentz boost of
the wave function of the particle at rest. We define the coordinate of the particle rest
frame as x ′ and the coordinate of the laboratory frame, which is moving with velocity
−β with respect to the particle frame, as x . The plane wave of the particle at rest
changes as follows by the Lorentz boost:

e−imt′ L.B.−−→ e−imγ(t−βx), (4.39)

where γ is the Lorentz factor (γ = 1/

√
1 − β2). Since the particle travels with velocity

β in the lab frame, the position of the particle is x = βt. Therefore, the phase factor
on the particle is,

e−imγ(t−βx) x=βt−−−→ e−i m
γ t

. (4.40)

This means that the mass is reduced by a factor γ if seen from the lab frame,

m → m

γ
. (4.41)

If we define the neutrino wave function as

|ψν(t)〉 = Cνe(t) |νe〉 + Cνμ(t) |νμ〉 . (4.42)

The effective state equation for the relativistic neutrinos can be obtained by substi-
tuting the transition amplitudes, μ and τ by μ/γ and τ/γ, respectively in Eq. (3.37) as,

http://dx.doi.org/10.1007/978-4-431-55462-2_3
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d

dt

(
Cνe

Cνμ

)
= −i

1

γ

(
μe τν
τν μμ

)(
Cνe

Cμμ

)
. (4.43)

Rigorously speaking, (4.43) is correct only for the case that the velocities of
the two mass eigenstates are the same (β = p−/E− = p+/E+). As we saw in
Sect. 4.1.2, the energy and momentum of the mass eigenstate neutrinos can vary
event per event and in general, such condition may not be satisfied. However, in usual
experimental conditions, the two wave packets overlaps even if the central positions
are not the same. In fact, the rigorous treatment of neutrino oscillation caused by the
extremely small masses is difficult and there are still some arguments (see for example
[1, 2]). We will not go in detailed discussions and will use (4.43) as an effective state
equation since this treatment (m → m/γ) is easy and intuitive.

Equation (4.43) means that it is possible to obtain oscillation formula of relativistic
neutrinos by substituting

μe/μ → μe/μ

γ
and τν → τν

γ
(4.44)

in the oscillation formula of the particle at rest. The mixing angle is not changed by
the substitutions,

tan 2θν → 2τν/γ
(μμ − μe)/γ

= 2τν

μμ − μe
= tan 2θν, (4.45)

and the relation between the mass eigenstates and the flavor eigenstates is the same
as Eq. (3.49), (|ν−〉

|ν+〉
)

=
(

cos θν − sin θν
sin θν cos θν

)(|νe〉
|νμ〉

)
. (4.46)

The wave functions of the mass eigenstates are,

|ψν±(t)〉 = |ν±〉 exp

[
−i

mν±
γ

t

]
, (4.47)

where,

mν± = μ ±
√

(Δμ/2)2 + τ2
ν, (4.48)

and

μ = μμ + μe

2
, Δμ = μμ − μe. (4.49)

The oscillation probability of the relativistic particle is, from Eq. (3.53),

Pνμ→νe(t) = sin2 2θν sin2 Δm±
2γ

t, (4.50)

http://dx.doi.org/10.1007/978-4-431-55462-2_3
http://dx.doi.org/10.1007/978-4-431-55462-2_3
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where Δm± = mν+ − mν− . In the lab frame, the energies of the neutrinos are
given by

Eν± = γmν± . (4.51)

Using the mean energy E = (Eν+ + Eν−)/2 and the average mass m = (mν+ +
mν−)/2, the Lorentz factor can be expressed as

γ = E

m
. (4.52)

Therefore, if we use E, the angular velocity of the oscillation in the lab frame becomes

ων = Δm±
2γ

= m2
ν+ − m2

ν−
4E

= Δm2±
4E

. (4.53)

Finally, the neutrino oscillation probability is

Pνμ→νe(L) = sin2 2θν sin2 Δm2±L

4E
, (4.54)

where t ∼ L is used. Using (4.52) the transition matrix in (4.43) can be rewritten as

1

γ

(
μe τν
τν μμ

)
= m

E

(
m + Δm

2

(− cos 2θν sin 2θν
sin 2θν cos 2θν

))
. (4.55)

Finally, the state equation for the two flavor neutrinos is expressed by

d

dt

(
Cνe

Cνμ

)
= −i

[
m2

E
+ Δm2

4E

(− cos 2θν sin 2θν
sin 2θν cos 2θν

)](
Cνe

Cνμ

)
. (4.56)

4.1.6 Oscillation of Antineutrinos

In experiments, we often treat antineutrinos. The reactor neutrino is an anti-electron
neutrino and CP violation can be measured from the comparison of the neutrino
and antineutrino oscillation probabilities. The oscillation formula of antineutrinos
can be obtained from that of the neutrinos by assuming CPT invariance. The CPT
transformation converts a fermion state as follows:

ψ(t) = ψL(t) + ψR(t)
C−→ ψL(t) + ψR(t)

P−→ ψR(t) + ψL(t)
T−→ ψR(−t) + ψL(−t) = ψ(−t).

(4.57)



4.1 Oscillation of Relativistic Two Flavor Fermions 55
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Fig. 4.2 Transition amplitudes after CPT transformations. The second line is CPT transformed
states from the first line. The arrow of the time is arranged from left to right in the third line

The first line of Fig. 4.2 corresponds to the state equation of the neutrinos:

d

dt

(
νe

νμ

)
= − i

γ

(
μe τ∗

ν
τν μμ

)(
νe

νμ

)
. (4.58)

The hermiticity of the transition matrix requires that the self-transition amplitudes
be real. The two cross-transition amplitudes can have an imaginary part and must be
complex conjugates to each other.5

The effect of CPT transformation on the transition of the neutrino state is graph-
ically shown in the second line of Fig. 4.2. In the third line, the arrow of time is
arranged from left to right. Therefore, if the first line is correct, the third like is also
correct due to CPT invariance. The state equation corresponding to the third line is

d

dt

(
νe

νμ

)
= − i

γ

(
μe τν
τ∗

ν μμ

)(
νe

νμ

)
. (4.59)

This is the state equation for the antineutrinos. From the comparison between
Eqs. (4.58) and (4.59), we notice that the state equation for antineutrinos is the same
as that for neutrinos after taking the complex conjugate of the transition matrix. If
we write τν = |τν|eiφ, any antineutrino formulas that are results of Eq. (4.59) can
be obtained by replacing φ ↔ −φ in the corresponding neutrino formulas obtained

5 The imaginary phase is not observable in the two flavor oscillations and has been ignored so far.
In this section, τν is treated as a complex number because the descriptions here are meant to aid in
explaining the antineutrino oscillation for three flavor neutrinos. In that case, the imaginary phase
plays an important role.
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from Eq. (4.58). For example, the mixing matrix of the antineutrinos can be obtained
from the mixing matrix of the neutrinos as follows:

(|ν−〉
|ν+〉

)
=

(
cos θ −eiφ sin θ

e−iφ sin θ cos θ

)(|νe〉
|νμ〉

)

CPT−−→
(|ν−〉

|ν+〉
)

=
(

cos θ −e−iφ sin θ
eiφ sin θ cos θ

)(|νe〉
|νμ〉

)
.

(4.60)

The oscillation probability formula for antineutrinos can also be obtained from the
corresponding neutrino oscillation probability formula as

Pνμ→νe = Pνμ→νe(φ → −φ). (4.61)

4.1.7 Mass Hierarchy for Two Flavor Neutrinos

We have seen that the neutrino oscillation is caused by the transition amplitudes
shown in Fig. 4.3. As a result of the transitions, the mixing between the mass eigen-
states and the flavor eigenstates is

(|νe〉
|νμ〉

)
=

(
cos θν sin θν

− sin θν cos θν

)(|ν−〉
|ν+〉

)
, (4.62)

where

tan 2θν = 2τν

μμ − μe
. (4.63)

Since τν always appears in the form |τν| in the two flavor oscillation probability,
we may define τν ≥ 0 without losing generality.

For the two flavor neutrino formulation, traditionally ν1 and ν2, having masses
m1 and m2 respectively, are used as mass eigenstates instead of ν±. The relation
between the νi and flavor eigenstates is defined as follows:

(|νe〉
|νμ〉

)
=

(
cos θ0 sin θ0

− sin θ0 cos θ0

)(|ν1〉
|ν2〉

)
, (4.64)

Fig. 4.3 Transition
amplitudes of two
flavor neutrinos −iμe

e eμ
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where θ0 is the mixing angle of the standard definition. The correspondence between
the flavor indexes (e, μ) and the mass indexes (1, 2) is defined such a way that ν1 is
the main component of νe and ν2 is the main component of νμ. This means that the
mixing angle has, by definition, the following magnitude relation,

cos2 θ0 ≥ sin2 θ0. (4.65)

The case where m2 > m1 is called the normal mass hierarchy (NH) and the case
where m2 < m1 is called the inverted mass hierarchy (IH). This naming comes from
the analogy to the charged lepton mass hierarchy of mμ > me.

Since the masses m± are defined as (4.6), there is a relation m+ ≥ m−. Hence for
the NH, the correspondence between m± and mi is,

NH : m1 = m− = μν − ων, m2 = m+ = μν + ων, (4.66)

where μν = (μτ + μe)/2 and ων =
√

(μμ − μe)
2/4 + τ2

ν. Substituting |ν2〉 and |ν1〉
for |ν+〉 and |ν−〉 in Eq. (4.62), we obtain

NH :
(|νe〉

|νμ〉
)

=
(

cos θν sin θν
− sin θν cos θν

)(|ν1〉
|ν2〉

)
. (4.67)

By comparing relation (4.67) and the definition (4.64),

NH : θ0 = θν. (4.68)

From the domain of the definition Eq. (4.65), cos 2θν = cos 2θ0 > 0 and therefore,
from Eq. (4.63),

NH : μμ > μe. (4.69)

For the IH, m1 > m2 and hence,

IH : m1 = m+ = μν + ων, m2 = m− = μν − ων. (4.70)

Substituting |ν1〉 and − |ν2〉 for |ν+〉 and |ν−〉,6 in Eq. (4.62), we obtain

IH :
(|νe〉

|νμ〉
)

=
(

sin θν − cos θν
cos θν sin θν

)(|ν1〉
|ν2〉

)
. (4.71)

By comparing relation (4.71) and the definition Eq. (4.64),

IH : θ0 = θν − π
2
. (4.72)

6 The phase of the state |ν2〉 is chosen such the way that the mixing matrix in Eq. (4.71) becomes
the identical matrix when τν = 0.
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Fig. 4.4 The mixing
triangles for two flavor
neutrinos. For inverted mass
hierarchy, 2θν becomes
larger than π/2

μμ μe

2
> 0

 2  (NH)22 (NH)

 2 (IH)

μμ μe

2
< 0

Table 4.1 Relations between neutrino oscillation parameters and transition amplitudes

Mass hierarchy m1 m2 |ν1〉 |ν2〉 STA θ0 cos 2θν

NH (m1 < m2) μν − ων μν + ων |ν−〉 |ν+〉 μe < μμ θν +
IH (m1 > m2) μν + ων μν − ων |ν+〉 − |ν−〉 μe > μμ θν − π/2 −

cos 2θ0 is by definition 0 or positive, (STA=Self-Transition Amplitude)

In this case, from the definition Eq. (4.65), cos 2θν = − cos 2θ0 < 0. Therefore,
from (4.63),

IH : μe > μμ. (4.73)

The above discussions show that the hierarchy of the physical masses m1 and m2
directly corresponds to the hierarchy of the self-transition amplitudes μe and μμ in

the two flavor case.7 The mixing angle θν’s for NH and IH are graphically shown in
Fig. 4.4.

The relation between the oscillation parameters and the transition amplitudes
depends on the mass hierarchy. It is summarized in Table 4.1.

4.2 Three Flavor Neutrino Oscillations

There are three neutrino flavors, νe, νμ and ντ. Accordingly there are three kinds of
flavor oscillations, νe ⇔ νμ, νe ⇔ ντ and νμ ⇔ ντ.

There are also three mass differences, which indicate that there are three oscillation
frequencies. Therefore, there are generally nine combinations of oscillation terms
for neutrinos.

All these facts make the neutrino oscillations much more complicated than the
two-flavor non-relativistic case.

7 For three flavor case, the hierarchies of the masses and the self-transition amplitudes are not
necessarily the same.
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In this section, we discuss the relativistic oscillation formula for three flavor
neutrinos. To simplify the discussion, we follow the procedure described in Sect. 3.3.5
and the treatment of relativistic oscillations as in Sect. 4.1.5.

4.2.1 Transitions Between Three Neutrino Flavors

The general neutrino wave function for the three flavors νe, νμ and ντ is expressed
by

|ψν(t)〉 = Ce(t) |νe〉 + Cμ(t) |νμ〉 + Cτ(t) |ντ〉 . (4.74)

There are nine transition amplitudes between the three neutrino states as shown in
Fig. 4.5, where the hermiticity of the transition amplitude is used.

The relativistic state equation can be written as described in Eq. (4.43), giving

dC(t)

dt
= −i

1

γ
T C(t) = −iT ′C(t), (4.75)

where

C(t) =
⎛
⎝Ce(t)

Cμ(t)
Cτ(t)

⎞
⎠ , T ′ = 1

γ

⎛
⎝μe τ∗

μe τ∗
τe

τμe μμ τ∗
τμ

ττe ττμ μτ

⎞
⎠ . (4.76)

T ′ is the effective transition matrix for relativistic particles as described in Eq. (4.43).
To solve Eq. (4.75), we diagonalize the T ′ using a unitary matrix Uν,

U †
νT

′Uν = M ′ = 1

γ

⎛
⎝m1 0 0

0 m2 0
0 0 m3

⎞
⎠ . (4.77)

We write the elements of Uν as follows:

Uν =
⎛
⎝Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3
Uτ1 Uτ2 Uτ3

⎞
⎠ . (4.78)

Fig. 4.5 The three flavor
neutrino transition
amplitudes iμe
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The matrix elements Uαi and the masses mi are combinations of the elements of the
transition amplitudes Tαβ.8

Using the mass matrix M ′, the state equation (4.75) can be written as

dD(t)

dt
= −iM ′D(t), (4.79)

where

D(t) =
⎛
⎝D1(t)

D2(t)
D3(t)

⎞
⎠ = U †

ν C(t). (4.80)

This equation can be easily solved as

D(t) = W (t)D(0), (4.81)

where

W (t) =
⎛
⎝e−i(m1/γ)t 0 0

0 e−i(m2/γ)t 0
0 0 e−i(m3/γ)t

⎞
⎠ . (4.82)

Then, C(t) can be obtained from the D(t) as

C(t) = UνD(t) = [UνW (t)]D(0) = [UνW (t)U †
ν ]C(0). (4.83)

4.2.1.1 The Mass Eigenstate

The general wave function Eq. (4.74) can be written from (4.83) as the sum of the
three mass eigenstates,

|ψν(t)〉 = e−i(m1/γ)tD1(0) |ν1〉 + e−i(m2/γ)tD2(0) |ν2〉 + e−i(m3/γ)tD3(0) |ν3〉 ,

(4.84)

where the mass eigenstates |νi〉 are the mixtures of the three flavor eigenstates |να〉
as given by

⎛
⎝|ν1〉

|ν2〉
|ν3〉

⎞
⎠ =

⎛
⎝Ue1 Uμ1 Uτ1

Ue2 Uμ2 Uτ2
Ue3 Uμ3 Uτ3

⎞
⎠

⎛
⎝|νe〉

|νμ〉
|ντ〉

⎞
⎠ = U T

ν

⎛
⎝|νe〉

|νμ〉
|ντ〉

⎞
⎠ . (4.85)

8 The explicit formulas of Uαi and mi consist of hundreds of terms made of the transition amplitudes
Tαβ and are complicated. For the two flavor oscillation formula, θ and mi consist of only a few
terms.
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We call the mixing matrix Uν the Maki-Nakagawa-Sakata-Pontecorvo (MNSP)
matrix in this book.

4.2.2 The Three Flavor Oscillation Formula

If a neutrino is produced as pure |να〉 state at t = 0, the initial condition is given by

Cα(0) = 1 and all other Cx (0) = 0. (4.86)

In this case, the coefficient of |νβ〉 at later time t is, from Eq. (4.83),

Cβ(t) = Uβ1U∗
α1e−i(m1/γ)t + Uβ2U∗

α2e−i(m2/γ)t + Uβ3U∗
α3e−i(m3/γ)t . (4.87)

The oscillation probability is,

Pνα→νβ = |Cβ(t)|2 =
∣∣∣∣∣
∑

i

UβiU
∗
αie

−i(mi/γ)t

∣∣∣∣∣
2

=
∑
i, j

�
αβ
i j exp(i2�i j ), (4.88)

where
�

αβ
i j ≡ UαiU

∗
βiU

∗
α jUβ j , (4.89)

and

�i j = mi − m j

2γ
t → m2

i − m2
j

4E
L. (4.90)

The oscillation probability (4.88) can also be directly obtained from the diagram in
Fig. 4.6.

Sometimes it is useful to separate the probability formula into the CP-odd and
CP-even terms and the oscillation probability is often expressed as9

Pνα→νβ = δαβ − 4
∑
i> j

sin2 �i j�
[
�

αβ
i j

]
− 2

∑
i> j

sin 2�i j ℑ
[
�

αβ
i j

]
, (4.91)

where �[�] and ℑ[�] denote the real and imaginary part of �, respectively. As
it is seen from the third term of Eq. (4.91), the oscillation probability depends on
imaginary part of Uαi. This is one of the distinct differences from the two flavor

oscillation. Since �
βα
i j = (�

αβ
i j )∗, the oscillation formula for reverse direction is,

9 See Sect. 8.5.1 for the complete derivation.

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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1
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Fig. 4.6 The oscillation probability |α〉 → |β〉 is the absolute square of the sum of three indistin-
guishable diagrams in which the initial state is |α〉 and the final state is |β〉. See also Fig. 3.5

Pνβ→να = δαβ − 4
∑
i> j

sin2 �i j�
[
�

αβ
i j

]
+ 2

∑
i> j

sin 2�i j ℑ
[
�

αβ
i j

]
. (4.92)

The oscillation probability of the antineutrino is obtained by taking the complex
conjugate of the mixing matrix elements as described in Sect. 4.1.6 and is expressed
by

Pνα→νβ = δαβ − 4
∑
i> j

sin2 �i j�
[
�

αβ
i j

]
+ 2

∑
i> j

sin 2�i j ℑ
[
�

αβ
i j

]
. (4.93)

The difference between the neutrino and antineutrino oscillation probability indicates
CP violation, which is expressed by

CP violation = Pνα→νβ − Pνα→νβ = 4
∑
i> j

ℑ
[
�

αβ
i j

]
sin 2�i j . (4.94)

If CP is violated, �
αβ
i j has to contain an imaginary component.

For the survival probability,

Pνα→να = 1 − 4
∑
i> j

|Uαi|2
∣∣Uα j

∣∣2 sin2 �i j = Pνα→να . (4.95)

This means that CP symmetry always holds. Therefore, the CP violation effect
should be searched for only in appearance measurements.

For the CPT transformation, the probabilities for CP and T transformations are
given by

PναL→νβL

CP−→ PναR→νβR

T−→ PνβR→ναR . (4.96)

http://dx.doi.org/10.1007/978-4-431-55462-2_3
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If there is difference between Pνα→νβ and Pνβ→να , CPT is violated. Experimentally
it is easier to search for CPT violation by comparing the survival probabilities:

Pνα→να − Pνα→να = CPT violation. (4.97)

Since CPT invariance was assumed when deriving the antineutrino oscillation
formula (4.93), the CPT violation probability calculated using (4.91) and (4.93)
is, by definition, 0.

Uα j and Δm2
jk can be measured by neutrino oscillation experiments. If the absolute

neutrino mass is measured by other experiments, the neutrino masses m j can also
be determined. Once Uα j and m j are determined, the transition amplitudes can be
obtained from

T = UνMU †
ν . (4.98)

For instance, the diagonal elements of the transition matrix are given by

μα = |Uα1|2m1 + |Uα2|2m2 + |Uα3|2m3. (4.99)

This indicates that the self-transition amplitude of flavor α is equivalent to the average
mass of να.10

4.2.3 Standard Parametrization of the Mixing Matrix

As described in Sect. 4.2.1, the transition matrix T defined by Eq. (4.75) is 3 × 3
Hermitian matrix. This form implies that there are nine free parameters. Three of
them are real values and the other six are contained in three complex values. The
mixing matrix Uν is made from matrix T and thus also has nine free parameters.

The oscillation probability can be expressed from Eqs. (3.68) and (3.77) as

Pνα→νβ =
∑

kl

〈νβ|νk〉 〈νk |να〉 〈νl|νβ〉 〈να|νl〉 e−i
(mk−ml )

γ t
. (4.100)

This value is invariant for the following replacements,

|να〉 → |να〉 eiδα , |νi〉 → |νi〉 eiδi . (4.101)

It means some of the imaginary parameters in the matrix Uν may be removed without
changing the oscillation probability. Equation (4.85) can be rewritten as

10 The νe mass measured by tritium β decay experiments is the weighted average of the squared
masses, m2

β = |Ue1|2m2
1 + |Ue2|2m2

2 + |Ue3|2m2
3.

http://dx.doi.org/10.1007/978-4-431-55462-2_3
http://dx.doi.org/10.1007/978-4-431-55462-2_3
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⎛
⎝|ν1〉 eiδe1

|ν2〉 eiδe2

|ν3〉 eiδe3

⎞
⎠ =

⎛
⎝|Ue1| |Uμ1| |Uτ1|

|Ue2| |Uμ2|eiδeμ
12 |Uτ2|eiδeτ

12

|Ue3| |Uμ3|eiδeμ
13 |Uτ3|eiδeτ

13

⎞
⎠

⎛
⎝ |νe〉

|νμ〉 ei(δμ1−δe1)

|ντ〉 ei(δτ1−δe1)

⎞
⎠ , (4.102)

where imaginary components are explicitly written as

Uαi = |Uαi|eiδαi , (4.103)

and
δαβ

i j = (δαi − δβi) − (δα j − δβ j ). (4.104)

Therefore, five phase parameters in the matrix Uν can be moved as the phases of the
wave functions. The imaginary component terms in the oscillation probability (4.91)
do not change for this treatment. For example,

ℑ[�μτ
23] → |Uμ2||Uμ3||Uτ2||Uτ2|ℑ

[
exp[i(δeμ

12 − δeμ
13 − δeτ

12 + δeτ
13)]

]

= |Uμ2||Uμ3||Uτ2||Uτ2| sin[δμ2 − δμ3 − δτ2 + δτ3] = ℑ[�μτ
23].

(4.105)

In general, for n neutrinos, 2n − 1 phases can be removed from the mixing matrix
in this way.

The removal of the five phase parameters from nine free parameters in the mixing
matrix leaves four parameters. Since a 3 × 3 orthogonal matrix can have only three
free parameters, Uν can not be an orthogonal matrix and at least one parameter has to
be imaginary. In general, for n neutrinos, there are n real self-transition amplitudes
and n(n−1)/2 complex cross-transition amplitudes, resulting in n2 parameters in the
transition matrix and the mixing matrix. Of these, 2n − 1 are absorbed as phases of
the wave functions, leaving (n −1)2 physical parameters in the mixing matrix. Since
a n × n orthogonal matrix can have n(n − 1)/2 parameters, at least (n − 1)(n − 2)/2
parameters of the mixing matrix have to be imaginary and the rest are real.

We express the mixing matrix of the three flavor neutrinos by three real mixing
angles and one imaginary parameter in the standard form, as given by

Uν =
⎛
⎝1 0 0

0 c23 s23
0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠

=
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13

⎞
⎠ , (4.106)

where si j = sin θi j and ci j = cos θi j . Although there is no one-to-one correspon-
dence between the mixing angles and the cross-transition amplitudes, parametriza-
tion (4.106) turned out to be useful because the disappearance probabilities observed
approximately correspond to the mixing angles.
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If si j were small,11 the mixing matrix would be approximated by

Uν =
⎛
⎝ 1 s12 s13e−iδ

−s12 1 s23

−s13eiδ −s23 1

⎞
⎠ + O(s2

i j ). (4.107)

Then, the transition amplitudes would be expressed as

T =
⎛
⎝μe τ∗

μe τ∗
τe

τμe μμ τ∗
τμ

ττe ττμ μτ

⎞
⎠ = Uν

⎛
⎝m1 0 0

0 m2 0
0 0 m3

⎞
⎠U †

ν

=
⎛
⎝ m1 (m2 − m1)s12 (m3 − m1)s13e−iδ

(m2 − m1)s12 m2 (m3 − m2)s23

(m3 − m1)s13eiδ (m3 − m2)s23 m3

⎞
⎠ + O(s2

i j ).

(4.108)

This would give the relations,

m1 ∼ μe, m2 ∼ μμ, m3 ∼ μτ, (4.109)

and
s12 ∼ τμe

μμ − μe
, s23 ∼ ττμ

μτ − μμ
, s13eiδ ∼ ττe

μτ − μe
. (4.110)

These relations indicate that the ordering of ν1, ν2 and ν3 are such that, in the limit
of small mixings, ν1 = νe, ν2 = νμ and ν3 = ντ.

4.3 Matter Effects

To calculate and interpret the oscillation probabilities of neutrinos that propagate
in the sun or earth, the matter effect has to be taken into account. The neutrino
scattering cross section is so small that practically we can ignore the scattering
effects. However, as we will see, the weak potential that causes coherent forward
scattering of ultrarelativistic neutrinos becomes of the same order as Δm2/Eν and
may have a sizable effect on the neutrino oscillation. It was pointed by [3–5] first
and called the Mikheyev-Smirnov-Wolfenstein (MSW) effect.

11 Experimentally it is known that si j are not small. The discussion here is just to obtain an image
of the meaning of the mixing angles.
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4.3.1 Weak Potentials

First we consider the neutrino-electron elastic scattering probability in the sun,

νe + e− → νe + e−, (4.111)

for which the Feynman diagram is shown in Fig. 2.13. The matrix element of the
scattering is shown in Eq. (2.84) and the cross section is given in (2.93). For solar
neutrinos with E ∼ 1 MeV, the total cross section is 9.5 × 10−43cm2. Assuming
that the neutrino passes through a 6,00,000 km thick hydrogen layer with density
ρ = 100 g/cm3, the probability that the neutrino is scattered by an electron is

P ∼ 10−6. (4.112)

Therefore, we can safely ignore the finite angle scatterings.
In order to calculate complete reactions of neutrino electron scatterings, it is

necessary to take into account all possible diagrams as shown in Fig. 4.7. The reaction
probability is given by

P ∝ |M0 + MI |2 = |M0|2 + 2�(M ∗
0 MI ) + |MI |2. (4.113)

The first term is the probability for the two particles to just propagate in the
space-time independently. The probability (4.112) is calculated from the third term of
(4.113), in which the neutrino is scattered to a finite angle with respect to the original
direction. This probability is proportional to G2

F and very small. Since M0 = 0
at finite momentum transfer, the second term �(M ∗

0 MI ) is finite for only forward
scattering. The probability of the second term is proportional to GF and can be much
larger than (4.112). The second term is responsible for the matter effect and we will
calculate its probabilities below.

Figure 4.8 shows the Feynman diagrams for the weak potentials in matter. First
we consider the νe-matter forward scattering. The matrix element of the νe-matter
scattering is the sum of the charged current (a) and neutral current (c) components,
given by

0 I

e, q e, q e,q

2

P

e,q

GF

Fig. 4.7 Neutrino scattering probability. M0 is the diagram without scattering and MI shows the
diagram of the scattering

http://dx.doi.org/10.1007/978-4-431-55462-2_2
http://dx.doi.org/10.1007/978-4-431-55462-2_2
http://dx.doi.org/10.1007/978-4-431-55462-2_2
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e e

W
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 e  e

Fig. 4.8 Diagrams of the weak potentials. a Charged current scattering. b Charged current annihi-
lation. c Neutral current scattering. a contributes for only νe, b contributes for only νe, c contributes
for all the neutrinos equivalently

MI = MW + MZ = 2
√

2GF[νeLγρνeL]

×
⎛
⎝[eLγρeL] +

∑
f =e,q

[ f γρ 1

2
(C f V − C f Aγ5) f ]

⎞
⎠ ,

(4.114)

where the same factorization of the equation used in Sect. 2.4.4.3 is applied. For the
neutral current potential, the νe is scattered by not only electron but also u and d
quarks in protons and neutrons in the matter.

The Dirac equation for neutrinos in the weak potential is

iγμ∂μνe + (VW + VZ)νe = 0, (4.115)

where VZ and VW , respectively, are the neutral and charged current weak potentials
given by

VW = 2
√

2GFγρ[eLγρeL],
VZ = √

2GFγρ

∑
f =e,q [ f γρ

(CfV − CfAγ5) f ]. (4.116)

For VW , the wave function of the LH electron at rest is12

eL = 1

2

(
1 −1

−1 1

)(
u
0

)
= 1

2

(
u

−u

)
, (4.117)

12 For simplicity, we omit the normalization factor
√

2me of the wave function here. It is cancelled
off later anyway.

http://dx.doi.org/10.1007/978-4-431-55462-2_2
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where, u represents the spin direction. The electron spin direction is random and the
u = χ1 and u = χ2 components exist with equal weight. The net contribution of the
LH electron density is

〈[eLγρeL]〉 = 1

8
(χ†

1 χ†
1)γ

ρ

(
χ1

−χ1

)
+ 1

8
(χ†

2 χ†
2)γ

ρ

(
χ2

−χ2

)

=
{

1/2; ρ = 0

0; ρ = 1, 2, 3.

(4.118)

This means that only the γ0 term of the electron current contributes to VW . From
Eqs. (4.116), (4.118) and the electron number density in matter ne, the charged
current potential is expressed as

VW = √
2GFne. (4.119)

For neutral matter that consists of atoms whose atomic number and mass number are
Z and A, the electron density is given by

ne[/cm3] = (6.0 × 1023) × ρ[g/cm3] × Z

A
. (4.120)

Therefore, the charged current potential is

VW [eV] ∼ 7.6 × 10−14 × ρ[g/cm3] × Z

A
. (4.121)

Since the density of the hydrogen is ρ ∼ 100 g/cm3 near the center of the sun and
Z ∼ A, the magnitude of the weak potential is

V�
W ∼ 8 × 10−12 eV. (4.122)

This value can be equivalent to the size of Δm2/4E in (4.56), which is ∼ 10−11 eV
for Δm2 ∼ 10−4 eV2 and E ∼ 10 MeV.

As for the neutral current potential VZ in (4.116), a proton consists of two
u-quarks and one d-quark and a neutron consists of two d-quarks and one u-quark.
Therefore, the neutral current potential becomes,

VZ = √
2GFγρ

⎛
⎝ ne

[
eγρ

(CeV − CeAγ5)e
] + (2n p + nn)

[
uγρ

(CuV − Cu Aγ5)u
]

+ (2nn + n p)
[
dγρ

(CdV − Cd Aγ5)d
]

⎞
⎠ ,

(4.123)
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where n p is the proton number density and nn is the neutron number density. For
neutral matters, the proton number density is the same as the electron number density,
n p = ne. In this case, the electron potential and proton potential cancel out,

VZ(e) + VZ(p) = √
2GFneγρ

×
⎛
⎝

[
eγρ (

(4xw − 1) + γ5

)
e
] + 2

[
uγρ (

(−(8/3)xw + 1) − γ5

)
u
]

+
[
dγρ (

((4/3)xw − 1) + γ5

)
d
]

⎞
⎠

→ 0.

(4.124)

The neutron potential is,

VZ(n) = √
2GFnnγρ

×
( [

uγρ (
(−(8/3)xw + 1) − γ5

)
u
] + 2

[
dγρ (

((4/3)xw − 1) + γ5

)
d
])

→ −√
2GFnnγρ

[
f γρ (

1 − γ5

)
f
] = −2

√
2GFnnγρ

[
fLγρ fL

]
.

(4.125)

Following the same procedure for VW ,

VZ = −√
2GFnn . (4.126)

nn is small in the sun and VZ is also small but it can be larger than n p or ne in the
earth.

For antineutrino scattering, νee−, the matrix element is, from Eq. (2.90),

Mν̄ee = 2
√

2GF[νeRγρνeR]
⎛
⎝[eLγρeL] +

∑
f =e,q

[ f γρ 1

2
(CfV − CfAγ5) f ]

⎞
⎠ .

(4.127)

The electron and quark currents are the same as νe scattering case, (4.114). Therefore,
the weak potentials for νe change the sign,

V W = −VW and VZ = −VZ , (4.128)

just like the electromagnetic potential changes the sign for the anti-particles.

http://dx.doi.org/10.1007/978-4-431-55462-2_2
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Fig. 4.9 Neutrino-matter
interactions

−i(VZ+VW)
e

−iVZ

e μ μ

4.3.2 Neutrino Oscillation in Matter

The weak potentials can be interpreted as the self-transitions as shown in Fig. 4.9.
When calculating the probability of the neutrino oscillation in matter, these ampli-
tudes have to be added to the state equation. The state equation of neutrinos in matter
is, therefore, from (4.56),

d

dt

(
Ce
Cμ

)
= −i

[
1

γ

(
μe τν
τν μμ

)
+

(
VZ + VW 0

0 VZ

)](
Ce
Cμ

)

= −i

[(
m2

E
+ VZ + 1

2
VW

)
I + ω0

(− cos 2θν + υW sin 2θν
sin 2θν cos 2θν − υW

)](
Ce
Cμ

)
,

(4.129)

where ω0 = Δm2±/4E and θν is the neutrino mixing angle in vacuum, which is
defined in Eq. (4.56). The potential parameter υW represents the strength of the
charged current weak potential,

υW = 2EVW

Δm2±
= 2

√
2EGFne

Δm2±
∼ 1.5 × 10−7ρ[g/cm3] Z

A

E[MeV]
Δm2±[eV2] , (4.130)

The oscillation part of the state equation (4.129) can be rewritten in the standard
form:

d

dt

(
Ce

Cμ

)
= −iω̃

(− cos 2θ̃ sin 2θ̃
sin 2θ̃ cos 2θ̃

)(
Ce

Cμ

)
, (4.131)

where the tilde mark (˜) above the parameters represents that they are the parameters
in the matter and ω̃ = κω0. The scale factor κ and the mixing angle in matter θ̃ are
defined as,

κ =
√

(cos 2θν − υW )2 + sin2 2θν, tan 2θ̃ = sin 2θν

cos 2θν − υW
. (4.132)

The relation between θν and θ̃ is shown graphically in Fig. 4.10a. It can also be
expressed by Fig. 4.10b. These relations show that VZ does not contribute to the
mixing nor oscillation phenomena. Since this state equation in matter has exactly the
same form as (3.42), we can borrow the relations derived in Sect. 3.3.2.

http://dx.doi.org/10.1007/978-4-431-55462-2_3
http://dx.doi.org/10.1007/978-4-431-55462-2_3
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Fig. 4.10 Mixing triangles in matter. a Based on the relation of the mixing angles in vacuum and
matter. b Same as a but based on the transition amplitudes and the weak potential

The mass eigenstates in matter are

(|ν̃−〉
|ν̃+〉

)
=

(
cos θ̃ − sin θ̃
sin θ̃ cos θ̃

)(|νe〉
|νμ〉

)
, (4.133)

with the new masses of

m̃± =
(

m + E

m

(
VZ + VW

2

))
± κω0. (4.134)

The general wave function in matter is

ψ̃ν(t) = C̃+e−i(m̃+/γ)t |ν̃+〉 + C̃−e−i(m̃−/γ)t |ν̃−〉 . (4.135)

The oscillation probabilities for neutrinos passing through matter of length L are
given by

P̃νe→νe(L) = P̃νμ→νμ(L) = 1 − sin2 2θ̃ sin2 ω̃L,

P̃νμ→νe(L) = P̃νe→νμ(L) = sin2 2θ̃ sin2 ω̃L.
(4.136)

The oscillation amplitude is

sin2 2θ̃ = sin2 2θν

(cos 2θν − υW )2 + sin2 2θν
. (4.137)

This indicates that at υW = cos 2θν, sin2 2θ̃ can be unity no matter how small the
vacuum oscillation amplitude, sin2 2θν, is. This mechanism was used to describe the
large solar neutrino deficit by small mixing angle in vacuum in the early days of solar
neutrino studies. υW = cos 2θν is called the resonance condition.
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The heavy neutrino component of the electron neutrino is

sin2 θ̃ = 1

2

(
1 − cos 2θν − υW

κ

)
. (4.138)

Even if the mass hierarchy is normal in vacuum (cos 2θν > 0), it can be inverted in
matter (cos 2θ̃ < 0), if υW > cos 2θν.

For solar neutrino oscillation,

Δm2± ∼ 8 × 10−5
[
eV2

]
, ρ� ∼ 100

[
g/cm3

]
, A ∼ Z, (4.139)

and the potential parameter for υ� in the sun is

υ� ∼ 0.2Eν[/MeV]. (4.140)

Since the solar neutrino energy is Eν < 20 MeV, some neutrinos experience the
resonance condition.

For atmospheric and accelerator neutrino oscillation on earth,

Δm2± ∼ 2.4 × 10−3
[
eV2

]
, ρ⊕ ∼ 5

[
g/cm3

]
, A ∼ 2Z, (4.141)

and the potential parameter υ⊕ is,

υ⊕ ∼ 0.1ηCEν[/GeV], (4.142)

where ηC=+1 for neutrinos and ηC=−1 for antineutrinos. Energies of atmospheric
and accelerator neutrinos (∼GeV) are in the ranges where matter effects can be
significant.

Note that cos 2θν changes its sign depending on the mass hierarchy of the neutrinos
(Table 4.1). This dependence can be used to determine the mass hierarchy, which can
not be determined by the vacuum oscillation.

Similarly for antineutrinos, the potential parameter υW changes sign. This depen-
dence can introduce a spurious CP violation effect. Therefore, the matter effect has
to be understood properly when measuring CP violation.

For long baseline reactor neutrino experiments,

Δm2± ∼ 8 × 10−5
[
eV2

]
, ρ⊕ ∼ 5

[
g/cm3

]
, A ∼ 2Z, Eν ∼ 4MeV. (4.143)

The potential parameter is
υ⊕ ∼ −0.02 (4.144)

and small.
The matter effect produces effective mass, and it may seem that standard model

massless neutrinos could oscillate in matter, acquiring mass from the matter effect.
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However, for massless neutrinos, the potential parameter (4.130) becomes infinitely
large and the mixing angle in matter (4.137) becomes 0. This indicates that massless
neutrinos can not oscillate even in matter.

4.4 A Paradox in Neutrino Oscillation

The interpretation of neutrino oscillation includes a famous paradox which can be
explained by the uncertainty principle.

Suppose we measure the time dependence of the probability of oscillation, νμ →
νe. The νμ is assumed to be produced in a charged pion decay at rest, π+ → μ+ +νμ.
Due to helicity suppression, the pion decays to νμ with almost 100 % probability.

From the neutrino oscillation, the probability of finding νe at time t is,

Pπ→νe(t) = sin2 2θ sin2 Δm2

4Eν
t, (4.145)

where t is the time between the pion decay and the detection of the neutrino. We
assume that the time of the pion decay is measured by detecting the muon. The
neutrino in the π → μν decay is a superposition of mass eigenstates |ν1〉 and |ν2〉.

ψν(0) = |νμ〉 = sin θ |ν1〉 + cos θ |ν2〉 . (4.146)

Since the muon energy in the decay depends on the neutrino mass, we can determine
which neutrino mass eigenstate is produced in the decay from the energy of the muon
as shown in Fig. 4.11. If we determine which neutrino mass eigenstate is produced
from the muon energy, we will observe ν1 with a probability sin2 θ and ν2 with a
probability cos2 θ in the neutrino detector.

Now, we assume that we know ν2 is generated in this measurement. In this case,
at later time t, the neutrino wave function becomes,

ψν(t) = |ν2〉 e−im2t = cos θ |νμ〉 e−im2t − sin θ |νe〉 e−im2t . (4.147)

μ

time & energy 
measurement

E1 or E2?
1 or 2 ?

μ oscillate?
μ detector  detector

time & flavor
measurement

Fig. 4.11 If we measure the energy of the muon precisely, we can know which mass eigenstate
neutrino, ν1 or ν2, is produced
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Therefore, the probability of finding νe in the ν2 event sample is

Pπ→ν2→νe(t) = cos2 θ × | − sin θ e−im2t |2 = sin2 θ cos2 θ. (4.148)

Similarly, the probability of finding νe in the ν1 event sample is

Pπ→ν1→νe(t) = sin2 θ × | cos θ e−im1t |2 = sin2 θ cos2 θ. (4.149)

The probability of observing νe is the sum of Eqs. (4.148) and (4.149),

Pπ→νe(t) = Pπ→ν2→νe(t) + Pπ→ν1→νe(t) = 1

2
sin2 2θ. (4.150)

This probability is independent of time and contradicts the oscillation probabil-
ity (4.145). It seems that whether the neutrino oscillates or not depends on whether
the muon energy is measured or not, even if the measured information is not used.
This is an example of the measurement problem.

This paradox can be explained qualitatively by taking into account the uncertainty
principle. The relation of neutrino mass and muon energy is, from Eq. (4.18),

Eμ = E0 − m2
ν

2mπ
, (4.151)

where E0 is the muon energy in the case mν = 0. In order to distinguish ν1 and ν2,
the energy resolution for the muon δEμ has to be smaller than the difference of muon
energies corresponding to the decays in which ν1 or ν2 is produced,

δEμ <
m2

ν2

2mπ
− m2

ν1

2mπ
= Δm2

2mπ
. (4.152)

Due to the uncertainty principle, in the system in which we can measure the energy
with such precision, we can not determine the time when the muon is detected with
precision better than,

δt >
1

2δEμ
>

mπ

2Δm2 . (4.153)

Since there is an ambiguity δt in the detection time of the muon, we can not know the
pion decay time with precision better than δt. Therefore, it is impossible to know the
time between the production and the detection of the neutrino with precision better
than δt. Since the angular velocity of the oscillation is ω = Δm2

2Eν
, the uncertainty of

the oscillation phase δ� introduced by the uncertainty of the time δt is,

δ� = ωδt = mπ

2Eμ
> 1, (4.154)
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where the relation Eμ = mπ
2 (1 − (mμ/mπ)2) < mπ

2 is used. This indicates that when
we try to measure the oscillation in this system, the time dependence of the oscillation
is averaged out and what will be observed is,

Pνμ→νe = sin2 2θ
〈
sin2 Δm2

4E
t

〉
= 1

2
sin2 2θ, (4.155)

where 〈 〉 shows the average over time. This probability agrees with Eq. (4.150).
Contrary, it is possible to show that in a system in which neutrino oscillation can

be measured (this is our system), it is impossible to measure the muon energy precise
enough to distinguish ν1 and ν2.

The reason we thought the paradox exited is that we wrongly assumed that we
could measure both the time and energy precise enough to observe the oscillation
and to distinguish between two neutrino masses simultaneously.
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Chapter 5
Experiments

Abstract In this chapter, the neutrino oscillation experiments that observed widely
accepted positive oscillation signals are reviewed. The experiments are categorized
as atmospheric, accelerator, solar, or reactor neutrino experiments. The principle
and technique of each experiment, such as how neutrinos are generated, what are
properties of the neutrinos, what is the structure of the neutrino detector and how the
neutrinos are detected, are explained briefly. In most of the papers, the experimental
data are analyzed assuming the two flavor oscillation formula and the oscillation
parameters, θ and Δm2 are derived. Significant plots and measured parameters are
shown at the end of the explanation of each experiment.

Keywords Atmospheric neutrino · Accelerator neutrino · Solar neutrino · Reactor
neutrino · Appearance measurement · Disappearance measurement

5.1 Introduction

In neutrino oscillation experiments, there are two types of measurements. One is
the appearance measurement, which detects the generation of a different flavor neu-
trino from the original flavor produced. In the two flavor oscillation, the appearance
probability is expressed by

Pνα→νβ = sin2 2θ sin2 Δm2

4E
L , (5.1)

where the flavor indices are different, β �= α.
The other is the disappearance measurement, which detects the same flavor neu-

trinos as the original flavor produced and measures the deficit of the neutrino flux
caused by the change of the flavor due to oscillation. The probability that the neutrino
remains in the original flavor is given by

Pνα→να = 1 − sin2 2θ sin2 Δm2

4E
L . (5.2)
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The parameters to be measured by neutrino oscillation experiments are the mixing
angle θ and the mass squared difference between the two mass eigenstates Δm2. If
the baseline L is measured in [km], the neutrino energy E is measured in [GeV] and
the squared mass difference Δm2 is measured in [eV2], the oscillation phase can be
numerically expressed as follows:

�[rad] = Δm2

4E
L = 1.27

Δm2[eV2]
E[GeV] L[km]. (5.3)

A number of neutrino oscillation experiments have been carried out at various base-
lines with various neutrino energies. Figure 5.1 summarizes the relation between
baselines and typical energies of such experiments. The solid lines in Fig. 5.1 show
the relation E = Δm2L/2π, which is called the first oscillation maximum, and the
dashed lines show the relation E = Δm2L/6π, which is called the second oscillation
maximum.

Currently oscillations at two mass square differences, |Δm2�| ∼ 8.0 × 10−5 eV2

and |Δm2⊕| ∼ 2.5 × 10−3 eV2, are confirmed by various experiments, where Δm2�
indicates that this Δm2 was suggested by the solar neutrinos first and Δm2⊕, by the
atmospheric neutrinos on earth. Some experiments suggest there are other oscillations
at |Δm2| ∼ 1 eV2, but this contradicts the three flavor neutrino scheme and is not
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Fig. 5.1 Relation between baselines and typical energies of various neutrino oscillation experi-
ments. The solid lines (single, double and triple lines) show the first oscillation maximum and the
dashed lines show the second oscillation maximum for Δm2 =1, 8.0 × 10−5 and 2.5 × 10−3 [eV2],
respectively
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accepted yet by the community. Atmospheric, accelerator and reactor experiments
measure neutrino oscillation at |Δm2⊕| and solar and reactor experiments measure at
|Δm2�|. In the following subsections the major neutrino oscillation experiments are
reviewed and the experimental methods and measured results are described.

5.2 Atmospheric Neutrino Oscillation

The first definite evidence of neutrino oscillation was found in atmospheric neutrinos
by the Super-Kamiokande group in 1998. A large number of high energy (>GeV)
cosmic-rays (mostly protons) are constantly hitting the earth. From the cosmic-ray
interactions with oxygen or nitrogen nuclei in the atmosphere, charged pions are
produced, which decay as π± → μ± + νμ/νμ with the intrinsic lifetime of cτ ∼8 m.
Then the muon decays as μ± → e± +νe/νe +νμ/νμ with cτ ∼700 m. The neutrinos
produced from these reactions are called the atmospheric neutrinos. The produced
neutrinos can penetrate the earth and be detected at the opposite side of the earth.
Since the thickness of the atmospheric layer is much less than the radius of the earth,
the neutrino production point is regarded as the surface of the earth and the distance
between the neutrino generation point and detector can be determined by

L = 2R⊗ cos θ, (5.4)

as shown in Fig. 5.2, where R⊗ is the radius of the earth. From the process of
atmospheric neutrino production, the ratio of the number of the muon-type neutrinos
to electron-type neutrinos is expected to be

N (νμ) + N (νμ)

N (νe) + N (νe)
∼ 2. (5.5)

Fig. 5.2 Atmospheric
neutrinos are generated
within the thin layer of
atmosphere and can be
detected on the opposite side
of the earth. The relation
between the angle and the
neutrino travel distance is
L = 2R⊗ cos θ, where R⊗ is
the radius of the earth

L

θ
ν

Earth

Detector

Cosmic Ray
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Fig. 5.3 The Super-Kamiokande detector. From [1]

However, early observations by the IMB and Kamiokande experiments showed that
the ratio is roughly one. This was called the atmospheric neutrino anomaly. The
Super-Kamiokande (SK) detector, which has 50 times more target volume than
Kamiokande detector, started the operation in 1996 and concluded that the anomaly
is due to neutrino oscillation. Figure 5.3 shows the structure of the SK detector. The
SK detector is located 1,000 m below Ikenoyama mountain in the Gifu prefecture,
Japan. It uses 50,000 tons of ultra-pure water as the neutrino target. Charged particles
with velocity β > 0.75 in water emit Čerenkov light. 11,200 20-inch photomulti-
pliers (PMT) are mounted at the inner wall of the detector to detect the Čerenkov
light.

From the charged current interactions in the water, νμ produces muon and νe

produces electron as shown in Eq. (5.6).

νμ + A → μ + X,

νe + A → e + X. (5.6)

The produced high energy charged leptons go forward with respect to the direction of
the incoming neutrinos. If the charged lepton is a muon, it produces a clear Čerenkov
ring as shown in Fig. 5.4a. The direction of the muon can be measured from the
direction of the Čerenkov ring. Therefore, the baseline of the neutrino’s detection
can be measured from the relation (5.4). If the muon is produced and stops within the
detector, which is called the fully contained event, the muon energy can be measured
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Fig. 5.4 Particle identification in a water Čerenkov detector. Muons produce clear Čerenkov rings
while electrons produce blurred Čerenkov rings

from the total Čerenkov light yield and the original neutrino energy can be deduced
from it.

For the νe interactions, the produced electrons generate an electromagnetic shower
in the water, and electrons and positrons in the shower generate blurred Čerenkov
ring as indicated in Fig. 5.4b. Most of the electrons and positrons are contained in
the detector volume since they produce the shower, and the electron energy can be
measured. The νμ and νe can be distinguished by the difference of the Čerenkov light
patterns. Figure 5.5 is the plot that reported the first evidence of neutrino oscillation.
Figure 5.5a shows a L/E dependence of the atmospheric neutrino events. A clear
neutrino deficit is observed in the νμ flux while distribution of νe is flat which is

Fig. 5.5 The historical data that show the first evidence of neutrino oscillations. a The ratio of
the fully contained Data to Monte Carlo prediction as a function of L/E . The dashed line shows
the expected shape for νμ ↔ ντ oscillation at Δm2 = 2.2 × 10−3eV2 and sin2 2θ = 1. A clear
deficit pattern is observed in νμ flux while νe flux stays constant. b Confidence intervals for sin2 2θ
and Δm2 for νμ ↔ ντ two-neutrino oscillations. The result of the Kamiokande experiment is also
shown. From [2]
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Fig. 5.6 Result of the L/E analysis of atmospheric neutrino data of Super-Kamiokande. The hor-
izontal axis is the reconstructed L/E . The points show the ratio of the data to the Monte Carlo
prediction without oscillations. The error bars are statistical only. The solid line shows the best fit
with 2-flavor νμ → ντ oscillation. The dashed and dotted lines show the best fit expectations for
neutrino decay and neutrino decoherence hypotheses, respectively. From [4]

consistent with the expectation. If the oscillation was of νμ → νe type, the νe flux
would have been increased by the rate of νμ disappearance. Therefore, this plot also
indicates that the oscillation is mainly due to νμ → ντ oscillation. Figure 5.5b shows
the contour plots of the allowed parameter region, which shows sin2 2θ ∼ 1 and
Δm2 ∼ 2×10−3 eV2. Now, 17 years later, the precision of the measurement is much
improved. Figure 5.6 shows the recent results of L/E dependence of the νμ events.
There is a dip at around L/E ∼ 6 × 102 km/GeV indicating the oscillation with
|Δm2| ∼ 2×10−3 eV2. An increase of the event rate, which is a unique characteristic
of oscillation, can be seen at L/E > 1 × 103 km/GeV. The up-to-date oscillation
parameters measured by the Super-Kamiokande group are

0.407 < sin2 θ < 0.583, 1.7 × 10−3 < Δm2 < 2.7 × 10−3eV2, (5.7)

at 90 % confidence level (CL) if the mass hierarchy is not specified [3].

5.3 Long Baseline Accelerator Experiments

In long baseline accelerator experiments, the neutrinos are produced mainly from
charged pion decays via the reaction,

p + A →π± + X

� π± → μ± + νμ/νμ.

(5.8)
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K2K 250km

T2K 295km

MINOS 735km
OPERA/ICARUS 
         732km

CERN

Super-Kamiokande

J-Parc
KEK

Fermilab.

Soudan

LNGS

Fig. 5.7 Locations of accelerators and detectors for K2K, T2K, MINOS, OPERA and ICARUS
experiments. (The scale of the maps are different.) [Google map]

Because of the almost 100 % branching fraction of the π → μ + ν decay, the
neutrino beam consists of mostly νμ or νμ. Therefore, the accelerator neutrino beam is
suitable for studying the oscillation of the muon-type neutrinos. The typical energy
of accelerator neutrinos is of the order of GeV. Thus, a baseline of several hun-
dred kilometers is necessary to study at the Δm2 measured by atmospheric neutrino
oscillation. The accelerator experiments K2K (KEK To Kamioka), T2K (Tokai to
Kamioka), MINOS (Main Injector Neutrino Oscillation Search) and OPERA (Oscil-
lation Project with Emulsion Tracking Apparatus) have measured positive neutrino
oscillation signals. Figure 5.7 shows the locations and baselines of those experiments.
The K2K, MINOS and T2K experiments have measured νμ → νμ disappearance.
MINOS and T2K also measured νμ → νμ disappearance and νμ → νe appearance.
The OPERA experiment detected νμ → ντ appearance events.

5.3.1 The K2K Experiment

K2K is the first long baseline accelerator experiment that measured a clear neutrino
oscillation signal. The neutrino beam was produced by the newly constructed neutrino
beam line at the KEK proton synchrotron as shown in Fig. 5.8. A 12 GeV proton
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Fig. 5.8 K2K neutrino beam production and detection. From [5]

beam was fired into the target to produce secondary particles. A pair of toroidal horn
magnets downstream focused π+’s to direct the beam at the SK detector, located
250 km away. The νμ beam was produced from the pion decays in the decay pipe.
Downstream of the decay pipe and the beam dump, the front detector measured
the neutrino spectra to normalize the events measured by the far detector. The SK
detector measured the νμ induced events by identifying the muons with the Čerenkov
light, so that νμ → νμ disappearance could be measured. Figure 5.9a shows the
energy distribution of the detected νμ. There is a dip at E ∼ 0.7 GeV indicating
Δm2 ∼ 3 × 10−3 eV2. Figure 5.9b shows the fitting results for Δm2 and sin2 2θ. The
measured oscillation parameters were

sin2 2θ ∼ 1, Δm2 = (2.8+0.7
−0.9) × 10−3eV2, (5.9)

Fig. 5.9 The K2K νμ → νμ final disappearance results. a Reconstructed energy distribution for
μ-like samples. The solid line is the best fit spectrum with neutrino oscillation and the dashed line
is expectation without oscillation. b Allowed region of the oscillation parameters. From [6]
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at 90 % CL. These results agree with the atmospheric neutrino measurements, indi-
cating that both of the experiments are observing the same oscillation.

5.3.2 The MINOS Experiment

Using the Tevatron accelerator at Fermilab, MINOS measured the νμ → νμ dis-
appearance with higher energy and longer baseline than the K2K experiment. The
neutrinos are produced at the Fermilab Main injector and sent to the MINOS detector
in the Soudan mine, 735 km away. The detector is composed of an iron and scin-
tillator calorimeter with tracking capability, along with a toroidal magnetic field to
separate the μ+ and μ− produced in the neutrino interactions. Figures 5.10 show the
final results of the MINOS experiment. Figure 5.10a shows the energy distribution
of the data sample for the fully contained νμ events compared to the predictions
with and without oscillations. A clear deficit is observed at a few GeV. MINOS mea-
sured the oscillation parameters of νμ → νμ and νμ → νμ separately using both
the π+ and π− beams, which are produced by changing the polarity of the magnets
of the neutrino beam line. As the νμ → νμ process is the CPT inverted process of
νμ → νμ, CPT invariance can be tested by comparing these two oscillation modes.
Figure 5.10b shows allowed oscillation parameter regions obtained from both modes.
These results agree well, ensuring CPT invariance. Combining both the νμ and νμ
data under CPT invariance, the oscillation parameters obtained were

sin2 2θ = 0.950+0.035
−0.036, |Δm2| = (2.41+0.09

−0.10) × 10−3 eV2. (5.10)

The results are consistent with the atmospheric neutrino and K2K results.

Fig. 5.10 The MINOS final results. a Energy distribution of the fully contained νμ event data
sample compared to predictions with and without oscillations. b Allowed region of |Δm2| and
sin2 2θ for νμ and νμ disappearances and the combined results of νμ, νμ. From [7]
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5.3.3 The T2K Experiment

The T2K experiment is the successor to the K2K experiment. Muon neutrinos are
produced by the decay of pions, which are produced by a 30 GeV proton beam from
the J-PARC proton synchrotron.

The neutrinos are sent to the Super-Kamiokande detector, located 295 km away.
A unique feature of the T2K neutrino beam is that it uses a so-called off-axis beam,
which provides the neutrinos with a narrow energy distribution. The direction of the
SK detector is 2.5◦ from the direction of the pion beam. The energy of a neutrino
that has small but finite deflection angle θ with respect to the direction of the pion is

Eν = m2
π − m2

μ

2(Eπ − pπ cos θ)

θ→small−−−−−→ d Eν

d Eπ
∝

1 − (θγπ)2

(1 + (θγπ)2)2 , (5.11)

where γπ is the Lorentz factor of the parent pion.
This equation means that the neutrino energy is insensitive to Eπ at θγπ ∼ 1 and the

neutrino energy distribution becomes narrow with the peak energy Eν ∼ 0.2mπ/θ.
Figure 5.11 shows the neutrino flux for various deflection angles (bottom panel)
and the energy distributions for the expected oscillation probabilities (top panel).
The T2K experiment has measured νμ → νμ disappearance and confirmed the large
deficit with significantly higher statistics than K2K as shown in Fig. 5.12. The allowed
oscillation parameter region in this experiment is compared with other measurements
in Fig. 5.13. The oscillation parameters used here are identified as Δm2

32 and θ23,
based on the framework with three neutrino flavors and all measurements agree well.
The best fit oscillation parameters from T2K are given by

Fig. 5.11 Top panel
expected νe appearance
probabilities. Bottom panel
neutrino energy spectra for
various beam deflection
angles. “OA” stands for “Off
Axis”. From [8]
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Fig. 5.12 Energy spectrum of μ-like events. The two predicted curves are for the no oscillation
hypothesis and for the best fit parameters. The large deficit of νμ is observed. From [9]

Fig. 5.13 The 90 % C.L. contour region for sin2 2θ32 and |Δm2
32|. The T2K result is compared with

results from other and previous measurements. From [9]

sin2 θ32 = 0.514 ± 0.082, |Δm2
32| = 2.44+0.17

−0.15 × 10−3 eV2. (5.12)

From the atmospheric neutrino oscillation, it was known that the νμ → νe oscil-
lation probability is small, if finite. The high νμ statistics allows T2K to observe
νμ → νe appearance signals. The measurement of the νμ → νe oscillation is very
important since CP violation of the neutrino oscillation can be observed only through
appearance measurements (see Chap. 4). This mode is the most promising channel
for the near future.

As of the year 2013, the T2K group has identified 28 νμ → νe candidate events
while the expected background is 4.9 events. The energy distribution of these can-
didate neutrinos is shown in Fig. 5.14. The energy distribution of the νe candidates
agrees well with the expected oscillation. In the three neutrino flavor oscillation
scheme, the νμ → νe oscillation probability is approximated as

http://dx.doi.org/10.1007/978-4-431-55462-2_4
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Fig. 5.14 The reconstructed energy distribution for νe candidates. The events with energy below
1,250 MeV (28 events) are used to calculate the oscillation probability. The solid line is the MC
prediction at the best fit with the assumption of normal hierarchy. The hatched area is the expected
background. From [10]

Pνμ→νe ∼ sin2 θ23 sin2 2θ13 sin2 Δm2
32L

4Eν
. (5.13)

Since sin2 θ23 is measured from νμ → νμ disappearance to be close to 0.5, the
smallness of Pνμ→νe is attributed mainly to the smallness of sin2 2θ13. Assuming
δCP = 0, sin2 2θ23 = 1 and the normal hierarchy,

sin2 2θ13 = 0.140+0.038
−0.032, (5.14)

is obtained.

5.3.4 The OPERA Experiment

The CNGS (CERN Neutrino to Gran Sasso) project sends neutrinos from CERN in
Geneva, Switzerland to the Gran Sasso laboratory in Italy located 732 km away. A
νμ beam is produced by the charged pion decays from the Super Proton Synchrotron
at CERN.

In the Gran Sasso underground lab, the OPERA and ICARUS (Imaging Cosmic
And Rare Underground Signals) detectors are installed and perform the neutrino
oscillation studies. OPERA is a hybrid detector of 1,300 tons of nuclear emulsion
bricks with large tracking detectors behind them. The charged particle track can be
measured with sub-micron level accuracy using the nuclear emulsion, which makes
it possible to detect the tau-lepton decay topology directly.

The purpose of the OPERA experiment is to detect the νμ → ντ appearance
oscillation signals. When a ντ interacts with a target material, it produces a τ lepton
through the charged current interactions,

ντ + A → τ− + X. (5.15)
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Fig. 5.15 A ντ appearance
candidate event from the
OPERA experiment. The
black segments represent the
reconstructed base-track in
the emulsion while the
straight lines are the result
of track fitting. This event is
consistent with
ντ + A → τ− + X , then
τ− → 3h + ντ. From [11]

Then, the τ− decays after traveling typically 1 mm, which is measured in the emul-
sion. Since the τ lepton is heavy (mτ ∼ 1.7 GeV), the energy of the neutrino has to
be larger than 3.5 GeV so that the E/L is not optimized for the oscillation maximum.
The OPERA group has identified three ντ candidate events as of the year 2013. The
event topology of the second ντ candidate is shown in Fig. 5.15. This event topology
is consistent with the reactions,

ντ + A → τ− + X (V0) (5.16)

followed by
τ− → 3h + ντ (V1), (5.17)

where V0 and V1 are the corresponding vertexes shown in the figure and h represents
a charged hadron. One of the three hadrons interacted with the target materials at
V2 and produced another charged particle. The τ candidate is between the vertexes
V0 and V1 with flight length 1.5 mm. Since the total energy of the three hadrons is
∼13 GeV, the average decay length of the τ lepton is longer than γcτ > 0.64 mm
which is consistent with the observation.

5.4 Solar Neutrino Oscillations

The sun is made up mainly of hydrogen. The temperature at the center is 1.5×107 K,
corresponding to hydrogen kinetic energy of 1.5 keV and density of 150 g/cm3. The
pressure at the center is 2.5 × 1011 atm. Although the temperature is below the
Coulomb barrier energy, the fusion reaction is possible via the tunneling effect.
The fusion reactions take place through various processes, but the net reaction is

4p + 2e− → 4He + 2νe + 26.73 MeV − Eν, (5.18)
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where the average neutrino energy 〈Eν〉 is, ∼ 0.6 MeV. This means that one νe is
generated for every 13 MeV of energy released. Since the solar constant (solar energy
flux at the surface of the earth) is 0.136 W/cm2, the solar neutrino flux at the earth’s
surface is estimated to be

0.136[W/cm2]/13 × [MeV/νe] = 6.5 × 1010νe[/cm2/s]. (5.19)

The actual fusion reaction in the sun is more complicated, as shown in Fig. 5.16.
The neutrinos are produced from pp, pep, 7Be, hep and 8B processes. The neutrino
energy differs depending on the generation processes as shown in Fig. 5.17. The main
νe production process is the pp process,

p + p → d + e+ + νe(< 0.42 MeV). (5.20)

This neutrino is called the pp neutrino. More than 98 % of fusion in the sun goes
through this process, with little ambiguity for the flux calculation. Since the final
state has 3 bodies, the energy spectrum of the pp neutrino is continuous. The end
point energy of the pp neutrino is 0.42 MeV. The next abundant neutrino flux is of
7Be neutrinos, which are produced in the process

d+p     3He+   

7Li+p     4He+4He  3He+3He     4He+p+p

3He+p     4He+e++ e

                           (hep) 

7Be+p     8B+   

3He+4He     7Be+   

7Be+e      7Li+ e (+ )
                        (7Be)  

8B     8Be +e++ e

                       (8B)
                          4He+4He 

98.5%

p+p     d+e++ e

                                (pp)
p+e +p     d+ e

                                            (pep)

99.77% 0.23%

13.8%84.7% ~2x10-5%

0.02%13.78%

Fig. 5.16 The proton-proton chain of the fusion process in the sun. Neutrinos are produced in the
pp, pep, 7Be, hep and 8B processes. 1.5 % of fusion takes place through the Carbon-Nitrogen-
Oxygen catalytic cycle (CNO cycle), which is not shown here
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Fig. 5.17 The solar neutrino spectrum predicted by the BS05(OP) standard solar model. The
neutrino fluxes are given in units of [/cm2/s/MeV] for continuous spectra and [/cm2/s] for line
spectra. The numbers associated with the neutrino sources show theoretical errors of the fluxes.
This figure is taken from the late John Bahcall’s web site, http://www.sns.ias.edu/~jnb/. From
[1, Chap. 1]

7Be + e− → 7Li + νe(0.86 MeV) or

→ 7Li∗ + νe(0.38 MeV).
(5.21)

For the 2-body final state, these neutrinos have fixed energies of 0.86 MeV (90 %)
and 0.38 MeV(10 %).

The most energetic solar neutrino is the hep neutrino. However, the flux is small
and since the energy spectrum is similar to that of the 8B neutrinos, it is difficult
to detect. The energy of 8B neutrino extends to 18.8 MeV and the flux is thousand
times larger than that of the hep neutrinos, so it is relatively easier to detect. The 8B
neutrino is produced from the following β+ decay process:

8B → 8Be∗ + e+ + νe(< 18.8 MeV), (5.22)

and its energy spectrum is continuous.

5.4.1 The Homestake Experiment

R. Davis observed the solar neutrinos for the fist time at the Homestake mine. He
used 37Cl as a neutrino target. His group made a 380 m3 tank at 1,500 m underground
and filled it with perchloroethylene (Cl2C=CCl2). Figure 5.18 shows a layout of the
Homestake neutrino detector.

http://www.sns.ias.edu/~jnb/
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If a solar neutrino with energy higher than 0.82 MeV interacts with 37Cl, the
following reaction takes place:

νe + 37Cl → e− + 37Ar. (Eth = 814 keV), (5.23)

where the unstable 37Ar captures the orbital electron, emitting Auger electron with
a half life of ∼35 days through the following process:

37Ar → 37Cl + νe + Auger electron. (5.24)

The perchloroethylene was flushed with He gas once per a few weeks. The extracted
gas was cooled to separate Ar from He. The decay rate of 37Ar was measured with
a small low-background proportional counter. Figure 5.19 shows a summary of the
observed production rate of 37Ar, where the background has been subtracted. The
Solar Neutrino Unit (SNU) is defined as 10−36 neutrino captures per atom per second.

Over a period of 25 years, 2,200 atoms of 37Ar were detected. As seen in the
figure, the production rate is only few atoms per day, which made this experiment
extremely difficult.

The results indicate that the measured neutrino flux is only 30 % of the expected
value calculated from the standard solar model (SSM). Whether this deficit of the

Fig. 5.18 A layout of the Homestake neutrino detector. From [12]
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Fig. 5.19 A summary of all the runs made at Homestake after implementation of rise-time counting.
Background has been subtracted. The unit of the vertical axis on the right is Solar Neutrino Unit
(SNU). From [12]

solar neutrino flux was due to error in the experiment or in the SSM prediction was
much debated. This problem remained unsolved for many years as the “solar neutrino
anomaly” until the discovery of neutrino oscillation.

5.4.2 The GNO, GALLEX and SAGE Experiments

A weak point of the 37Cl experiment is that the energy threshold of the reaction is
higher than the energy of the pp neutrinos. The expected 8B neutrino flux depends on
details of the solar model. On the other hand, the pp neutrino process gives virtually
no ambiguity in the neutrino flux prediction since most of the solar neutrinos are
generated by this fusion process (5.20). The 71Ga experiment was a very promising
way to solve the solar neutrino flux anomaly since it can detect the pp neutrinos.
When νe interacts with 71Ga, the following reaction, similar to (5.23) but with much
lower energy threshold, takes place,.

νe + 71Ga → e− + 71Ge, (Eth = 233 keV), (5.25)

where 71Ge decays as,
71Ge → 71Ga + νe + Auger electron, (5.26)

with a half life of ∼11 days.
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Fig. 5.20 GALLEX and GNO data. GALLEX data were taken before 1998 and GNO data where
taken after 1998. The prediction of the SSM is shown as a solid horizontal line. The result shows
that the detected neutrino flux is 51 ±4 % of the SSM prediction. From [13]

There were three 71Ga experiments. GALLEX (GALLium EXperiment) used
30 tons of target and its successor GNO (Gallium Neutrino Observatory) used
100 tons at the Gran Sasso Laboratory. SAGE (Soviet American Gallium Experi-
ment) used 50 tons of Ga target at the Baksan underground laboratory. Figure 5.20
shows the results from GALLEX and GNO and Fig. 5.21 shows the results from
SAGE. Both experiments observed about half of the solar neutrino flux predicted by
the SSM.

From these results, it turned out to be clear that the solar neutrino problem is
originated in some aspect of particle physics we did not understand.

5.4.3 The Super-Kamiokande Experiment

In the Super-Kamiokande (SK), the solar neutrinos were detected by the νe elastic
scattering,

ν + e− → ν + e−. (5.27)

The SK detector, filled with 50 kilotons of ultra-pure water, can measure the solar
neutrino in real time by detecting the Čerenkov light produced by the scattered
electron.

As described in Sect. 2.4.4, the cross section of νee− scattering, σνee, is signifi-
cantly larger than that of νμ/τe− scattering, σνμ/τe, due to the charged current diagram.
Since σνμe− = σντe− ∼ σνee−/6.1, the elastic scattering rate observed at SK is

φobs ∼ φνe
+ 1

6.1
(φνμ

+ φντ
). (5.28)

http://dx.doi.org/10.1007/978-4-431-55462-2_2
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Fig. 5.21 Yearly capture rate from the SAGE experiment. The shaded band is the combined best
fit for all years and its error. The error is statistical with 68 % confidence. The prediction of the SSM
is 130 SNU and the result shows that the detected neutrino flux is about half of the SSM prediction.
From [14]

If neutrino oscillation changes the νe to a νμ or ντ, the observable neutrino flux
decreases. For νe scattering at a few MeV, the electron is scattered forward, as indi-
cated by Fig. 2.16, emitting Čerenkov light that keeps the directionality information.
Figure 5.22a shows the angular distribution for the solar neutrino candidates with
respect to the direction of the sun. The clear directionality of the sun is used to
distinguish the solar neutrino events from the isotropic backgrounds. Figure 5.22b
shows the energy spectrum of the solar neutrinos normalized by the SSM prediction,
resulting in the average ratio of 0.4. The apparent deficit of the solar neutrino flux is
observed here again.

5.4.4 The SNO Experiment

Neutrino oscillation was one of several possible reasons for the deficit of solar neu-
trinos observed by experiments. One approach to testing the oscillation hypothesis
is to measure the total neutrino flux of

φν = φνe
+ φνμ

+ φντ
, (5.29)

using neutral current interactions.
The cross section of neutral current interactions does not depend on the neutrino

flavor. Therefore, even if the neutrino flavor changes by neutrino oscillation, the
total neutrino flux can be measured using the neutral current interactions. The SNO
(Sudbury Neutrino Observatory) experiment used 1,000 tons of heavy water (D2O)
as a neutrino target to measure the neutral current interactions of the solar neutrinos.
The heavy water was contained in an acrylic sphere 12 m in diameter, which is located
2,070 m undergrounds at Vale Inco’s Creighton Mine in Sudbury, Canada. Figure 5.23

http://dx.doi.org/10.1007/978-4-431-55462-2_2
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Fig. 5.22 a The angular distribution of the solar neutrino candidate events with respect to the
direction of the sun. The dotted line seen under the peak in the solar direction represents background
contributions. b Ratio of observed and expected energy spectra. The dotted line is the average for
all data. From [15]

shows a schematic view of the SNO detector. The Čerenkov light is detected by
9,456 8-inch photomultipliers which measure γ-rays and electrons. When a neutrino
interacts with a deuteron, the deuteron is broken into a proton and a neutron through
the neutral current interaction as shown in Fig. 5.24a,

νx + D → νx + p + n. (5.30)

The energy threshold of the reaction is 2.2 MeV and 8B solar neutrinos can be
detected. The neutron is thermalized by scattering with deuterium or oxygen nuclei
and is captured by a deuteron, forming tritium and emitting a 6.25 MeV γ,

n(thermal) + D → T + γ(6.25 MeV). (5.31)

By measuring the 6.25 MeV γ events, the total neutrino flux regardless of its flavors
can be measured. At the same time, electron neutrinos can interact with deuterium
through the charged current reaction as shown in Fig. 5.24b,

νe + D → e− + p + p. (5.32)

This event can be identified by the Čerenkov light from the electron. The neutrino-
electron elastic scattering (νx + e− → νx + e−) also occurs as in the Super-
Kamiokande detector, but with lower statistics. Reaction (5.32) and ν − e elastic
scattering (5.27) can be statistically distinguished by using the angular distribution
of the Čerenkov signals with respect to the direction of the sun.

The results obtained in the year 2002 showed that the neutrino flux measured with
NC interactions is consistent with the prediction of the standard solar model.
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Fig. 5.23 A schematic view of the SNO detector. 1 kton of D2O is contained in an acrylic sphere
with radius 6.5 m. The acrylic sphere is submerged in the water shield. 9,456 PMTs capture the
Čerenkov light. The laboratory is 2,070 m underground in the Sudbury mine, Canada. From [16]
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Fig. 5.24 a Neutral current interactions of neutrinos with deuteron. The cross section for neutral
current interactions is the same for all neutrinos. Therefore, the total neutrino flux can be measured
independent of flavor. b Only νe transforms to the charged lepton e− through the charged current
interaction because the solar neutrino energy is smaller than the muon mass
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Fig. 5.25 Fluxes of 8B solar neutrinos, φ(νe), and φ(νμ or ντ), deduced from SNO’s CC, ES, and
NC results of the salt phase measurement. The bands represent the 1σ error. The contours show the
68, 95, and 99 % joint probability for φ(νe) and φ(νe or τ). From [17]

The ratio of CC flux and NC flux is 0.3,

φNC

φSSM
= 1.0+0.20

−0.23,
φCC

φNC
= 0.306 ± 0.026 ± 0.024. (5.33)

The results are summarized in Fig. 5.25. These results indicate that the electron
neutrino is transformed to other types of neutrinos.

Later, 2,000 kg of NaCl were dissolved in the heavy water. 35Cl has large neutron
absorption cross section and it emits γ’s with total energy 8.6 MeV after absorbing a
neutron. The NaCl increased the detection efficiency and improved the accuracy of the
measurement. The group also installed 3He proportional counters in the detector and
measured the neutron by detecting the proton from the reaction 3He + n → 3H + p.

Finally, the group obtained a total 8Be neutrino flux of

�B =
(

5.25 ± 0.16(stat.)+0.11
−0.13(syst.)

)
× 106 /cm2/s. (5.34)

The measured νe flux is about 32 % of the expectation from the standard solar model.
Figure 5.26 shows the allowed oscillation parameter region measured by SNO.

There are two regions which satisfy the measurements, corresponding to the Large
Mixing Angle (LMA) solution at Δm2 ∼ 10−4 eV2 and the Low solution at
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Fig. 5.26 Two flavor
neutrino oscillation analysis
contours. The matter effect
described in the next chapter
is included. From [18]

Δm2 ∼ 10−7 eV2. The Low solution has been excluded by combining other solar
neutrino and reactor experiments. The measured oscillation parameters of LMA
solution are

tan2 θ12 = 0.427+0.033
−0.029, Δm2

21 = 5.62+1.92
−1.36 × 10−5 eV2. (5.35)

5.4.5 The Borexino Experiment

Borexino is an experiment that uses liquid scintillator to detect neutrinos. The liquid
scintillator produces by a factor of several tens more light than Čerenkov light and
the energy resolution is much better than that of Čerenkov detectors. While Čerenkov
radiation has an energy threshold, the scintillator does not have such threshold and
lower energy neutrinos can be detected than in water Čerenkov detectors. On the other
hand, the scintillation light is emitted isotropically and the neutrino directionality
information is lost. Figure 5.27 shows a schematic of the Borexino detector. The
Borexino detector is composed of 300 tons of ultra low-background liquid scintillator
contained in a 8.5 m diameter Nylon balloon. The balloon floats in non-scintillating
buffer oil contained in an outer Nylon vessel and a stainless steel spheric tank with
a diameter of 13.7 m. 2,200 8-inch PMTs with the Winston cone mounted on the
inside wall of the stainless steel tank view the scintillation light. The stainless steel
tank sits inside a water tank. The detector is located in the Gran Sasso laboratory in
Italy, 1,400 m underground.
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Fig. 5.27 A schematic view of the Borexino detector. From [19]

Borexino group identified 7Be and pep solar neutrinos for the first time by using
neutrino-electron elastic scattering, as shown in Eq. (5.27). 7Be and pep solar neutri-
nos have energies of 862 keV and 1.4 MeV, respectively. Measuring the solar neutrino
deficit in these energy regions is important because the oscillation probability of solar
neutrinos is supposed to change due to the matter effect.

An experimental difficulty is to cope with the backgrounds. The energy of 7Be and
pep neutrinos is similar to that from natural radioactivities that come from the decay
chains of 235U and 232Th, and the decay of 40K. These naturally-occurring radioactive
elements emit γ-rays with energies below 2.7 MeV, so 7Be and pep neutrino signals
could easily be swamped by the background signals. The Borexino group reduced
backgrounds significantly by limiting the contamination of such radioactive elements
in the detector and succeeded in measuring 7Be and pep solar neutrinos. Figure 5.28
shows the energy spectrum of the solar neutrino candidates and various backgrounds.
Although 7Be neutrinos have a fixed energy, the scattered electron has a Compton
scattering-like energy dependence with a sharp maximum energy edge at Ee ∼
660 keV, which makes a “shoulder” in the energy spectrum. The survival probability
for νe → νe was measured to be 51 ± 7 % of the expected value.

5.4.6 Summary of Solar Neutrino Observations

The deficits of the solar neutrino flux observed in all the experiments with various
methods seem to depend on the neutrino energy as summarized in Fig. 5.29. As will
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Fig. 5.28 Energy spectrum after statistical subtraction of α signal. An analytical fit to various
components was done between 290 and 1,270 KeV. From [19]

Fig. 5.29 Energy dependence of solar neutrino deficit. From [20]

be discussed in the next chapter, this energy dependence can be described by the
matter effect of varying densities in the sun. Figure 5.30 summarizes all the solar
neutrino experiments. Only the LMA solution remains. The measured oscillation
parameters including θ13 in the analysis were

tan2 θ12 = 0.468+0.031
−0.044, Δm2

21 = 5.4+1.7
−1.1 ×10−5 eV2, sin2 θ13 < 0.030. (5.36)
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Fig. 5.30 Allowed regions
of the oscillation parameters
at 68 % C.L. (inner), 95 %
(middle) C.L. and 99.7 %
(outer region) C.L.,
respectively, for combination
of all the solar neutrino
results. From [19]

5.5 Reactor Neutrino Oscillations

In nuclear reactors, uranium and plutonium release energy through fission reactions.
Figure 5.31 shows an example of a fission reaction process. In this example, 235U
absorbs a thermal neutron and breaks up into 140Te and 94Rb, emitting two neutrons.
These fission products are neutron rich nuclei that produce the electron antineutrinos
(νe) via β-decay. In general, these fission products become stable after six β-decays,
so that every fission produces six νe’s, releasing 200 MeV of energy. Therefore, a
reactor operating with 3 GW of thermal power produces 6 × 1020νe’s per second.
The energy of the reactor neutrinos is a few MeV, corresponding to the typical energy
of nuclear β decays. The main fissile elements are 235U, 239Pu, 241Pu and 238U, for
which the emitted neutrino spectra are known with a precision ∼2 %.
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Fig. 5.31 An example of the fission reaction. νe’s are generated in β decays of fission products.
On average about six νe’s are generated per fission. ∼ 6 × 1020 νe’s/sec are generated in a reactor
operating at 3 GWth of power. The energy of the neutrinos is a typical β decay energy of a few MeV
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Usually, the reactor neutrinos are detected by using liquid scintillator (LS), which
is made of organic oil and is rich in free protons. The reactor neutrino is detected by
using the inverse beta decay (IBD) reaction with a proton,

νe + p → e+ + n. (5.37)

The threshold energy of this reaction is mn − m p + me = 1.8 MeV and the cross
section is given by Eq. (2.100)

σIBD ∼ 1.0 × 10−43 Ee+ pe+[cm2], (5.38)

where Ee+ and pe+ are measured in MeV and a neutron lifetime of 880 s is assumed.
The positron and its annihilation γ’s deposit energy in the LS, emitting scintillation

light with lowest energy of 1.02 MeV. Since the energy of the recoiled neutron is
typically 0.1 MeV or less, the neutrino energy can be measured from the visible
energy to be

Eνe ∼ Evisible + mn − m p − me = Evisible + 0.8 MeV. (5.39)

Figure 5.32 shows the reactor neutrino spectrum, IBD cross section and observable
reactor neutrino spectrum.

The neutron produced in the IBD reaction is instantly thermalized in the LS by
recoiling and it is absorbed by a proton, forming deuteron and emitting a 2.2 MeV γ.

n + p → d + γ : Eγ = 2.2 MeV. (5.40)

This absorption process takes place about 200 μs after the IBD reaction. Therefore,
for one neutrino interaction, the positron signal and the neutron absorption signal
are observed at a separated time. By requiring this “delayed coincidence”, natural
backgrounds can be substantially reduced. The positron signal is called the “prompt
signal” and the neutron signal is called the “delayed signal”. In some experiments,

Fig. 5.32 Reactor neutrino
spectrum (dashed line), IBD
cross section (dotted line),
and the product of them
showing the visible energy
spectrum of the reactor
neutrino signal (solid line).
The horizontal axis is the
neutrino energy (Eν). The
vertical axis is in arbitrary
units

0 1 2 3 4 5 6 7 8 9 10 

Eν(MeV)

http://dx.doi.org/10.1007/978-4-431-55462-2_2
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the scintillator is doped with Gadolinium (Gd) to absorb the neutron. Gd has the
largest thermal neutron absorption cross section among the natural elements, so that
it is possible to shrink the coincidence timing width below 200 μs, which helps to
reduce the accidental backgrounds. The excited Gd after the neutron absorption,
emits cascade γ’s with total energy of 8 MeV,

n + Gd → Gd′ + γ′s :
∑

Eγ ∼ 8 MeV. (5.41)

Since the energies of backgrounds from natural radioactivity are less than 5 MeV,
the Gd helps to reduce backgrounds drastically.

In the presence of neutrino oscillation, the energy spectrum of the reactor neutrinos
changes as follows:

Nν(E) = Nν0(E)

(
1 − sin2 2θ sin2 Δm2

4E
L

)
, (5.42)

where Nν0(E) is the energy spectrum of neutrinos without neutrino oscillation. Since
the energy of reactor neutrinos is much smaller (typically 1/100 or less) than that
of accelerator neutrinos, reactor neutrino experiments can provide sensitivity to
either significantly smaller Δm2 at the same baseline or oscillation with the same
Δm2 at a significantly shorter baseline. The low neutrino energy makes appearance
experiments impossible; only disappearance measurements are possible for reactor
neutrinos.

Four reactor neutrino experiments are currently in operation and all of them
have observed positive oscillation signals. The KamLAND (Kamioka Liquid scin-
tillator AntiNeutrino Detector) experiment has observed a large neutrino oscilla-
tion at Δm2 ∼ 8 × 10−5 eV2 and Double Chooz, Daya Bay and RENO (Reac-
tor Neutrino Oscillation) experiments have observed small neutrino oscillation at
Δm2 ∼ 2.5 × 10−3 eV2.

5.5.1 The KamLAND Experiment

The KamLAND experiment uses 1,000 tons of liquid scintillator to detect reactor
neutrinos coming from reactors hundreds of kilometers away. Although 70 reactors
are spread throughout Japan and Korea, most of the neutrinos detected by KamLAND
come from a narrow circular band of 150–200 km from the detector. The result is
that it looks as if one gigantic reactor is located at an average baseline of 180 km.
Figure 5.33 shows a schematic drawing of the KamLAND detector. The 1 kton of ultra
low-background liquid scintillator is contained in a 13 m-diameter transparent plastic
balloon. The balloon is floating in 2 ktons of non-scintillating buffer oil. 1,879 17 or
20 in. diameters photomultipliers (PMT) in the buffer oil detect the scintillation light.
The PMTs are mounted on the inner wall of a 18 m diameter stainless steel spherical
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Fig. 5.33 Schematic diagram of the KamLAND detector. From [21]

tank. The stainless steel tank is submerged in 3 ktons of pure water, which works as a
cosmic ray veto counter. The detector is housed in the cavern where the Kamiokande
detector used to be. This location is 1,000 m below the top of the Ikenoyama mountain
where the cosmic-ray rate is reduced by a factor of 10−5 compared with the surface.
KamLAND observed a large deficit of the reactor neutrinos and a clear distortion
of its energy spectrum. Figure 5.34 shows the L0/Eν dependence of the survival
probability of νe, where L0 = 180 km is the flux-weighted average baseline. From
the oscillation pattern in the L0/Eν spectrum, it turned out that KamLAND is located

Fig. 5.34 Ratio of the
observed νe spectrum to the
expectation for no-oscillation
versus L0/E . L0 = 180 km
is the flux-weighted average
reactor baseline. A clear
oscillation pattern is visible.
From [22]
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Fig. 5.35 Allowed (tan2 θ − Δm2) regions from the KamLAND experiment together with the
summary result of solar neutrino experiments. The shaded regions are from combined analysis of
the solar and KamLAND data. From [22]

at around the second oscillation maximum. The increase of the νe flux at L0/Eν ∼ 30
and 60 km/MeV indicates that the disappearance is caused by oscillation since the
decay of the neutrino or decoherence can only decrease the νe flux. The best fit of
the three flavor analysis of only the KamLAND data indicates

tan2 θ12 = 0.481+0.092
−0.080, Δm2

21 = 7.54+0.19
−0.18 × 10−5eV2. (5.43)

Figure 5.35 shows the allowed oscillation parameter region from KamLAND
together with the result of solar neutrino experiments. The KamLAND and solar
neutrino results are consistent with each other. Since KamLAND observes νe disap-
pearance and solar neutrino experiments observe νe disappearance, the agreement
shows that CPT invariance holds. Finally, the best fit oscillation parameters com-
bining KamLAND, solar neutrinos and the θ13 experiments described in the next
section are,

tan2 θ12 = 0.436+0.029
−0.025, Δm2

21 = 7.5 ± 0.18 × 10−5eV2. (5.44)

5.5.2 The Double Chooz, Daya Bay and RENO Experiments

The Double Chooz (DC), Daya Bay (DB) and RENO experiments are new generation
reactor neutrino experiments, which measure the reactor νe oscillation at baselines of
1 ∼ 2 km. They are sensitive to the region Δm2 ∼ 2 × 10−3 eV2, which corresponds
to the parameter observed in νμ disappearance by the accelerator and atmospheric
neutrino experiments. When the DC, DB and RENO experiments were designed, the
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Fig. 5.36 Detector and reactor locations, baselines and detector masses of the Double Chooz, Daya
Bay and RENO experiments. The circles show the reactor cores and the cylinders show the neutrino
detectors (The scales are not the same.)

mixing angle, called the θ13, was known to be small because the Chooz and Palo
Verde experiments could not find a reactor neutrino deficit at ∼1 km and showed that
sin2 2θ13 < 0.15. This means that the disappearance probability is small and high
precision measurement is necessary to detect it. Therefore, the three experiments
use the near and far detectors with identical structure to significantly improve the
accuracy of the neutrino deficit measurement. The baselines of the far detectors
are close to the oscillation maximum (L ∼ 1.5 km) and the baselines of the near
detectors are where the oscillation is still small (L ≤ 400 m). Since both detector
sets have an identical structure, most of the systematic uncertainties are canceled out
by comparing the data from the far and near detectors, and precise measurement of
the νe disappearance is possible.

Figure 5.36 shows the locations of detectors and reactors for the three experi-
ments. Daya Bay uses multiple detectors and reactors to cross-check the systematic
uncertainties and to obtain higher statistics. The detectors of these three experiments
have very similar multi-layer structures. Figure 5.37 shows a schematic view of the
Double Chooz detector as an example. The neutrino target is 8.3 tons of Gd-loaded
liquid scintillator and the delayed coincidence is used to identify the reactor neu-
trinos. The target scintillator is contained in a cylindrical acrylic vessel, which is
immersed in liquid scintillator without Gd called the γ-catcher. The γ-catcher scintil-
lator is contained in the second acrylic vessel. The γ-catcher scintillator detects γ-rays
that leak from the neutrino target region to reconstruct the original energies of the
positron and Gd signals. The second acrylic vessel is immersed in non-scintillating
buffer oil, which shields the scintillators from γ-rays and neutrons coming from out of
the detector. 390 10 inch photomultipliers are submerged in the buffer oil and detect
scintillation lights. All these layers are placed in a stainless steel tank and the tank
is placed in additional scintillator layer which works as a cosmic ray veto counter.
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Fig. 5.37 Schematic view of the Double Chooz detector. From [23]

Fig. 5.38 Daya Bay data. a The upper panel shows the prompt positron spectrum (data points) of
the far detectors. The thin solid line shows the no-oscillation prediction based on the measurements
of the near detectors. The thick solid line is the best-fit spectrum with oscillation. The shaded area
shows the expected background contribution. The lower panel shows the background-subtracted
data divided by the predicted no-oscillation spectrum. b Allowed region for Δm2 and sin2 2θ,
obtained from a comparison of the rates and prompt energy spectra. The black dot is the best fit
parameters with rate + spectra analysis and the black square is the best fit parameters with rate-only
analysis. From [24]

All three experiments observed a positive signal for the reactor neutrino deficit.
sin2 2θ13 can be obtained from the deficit and Δm2

31 can be obtained from the spectral
analysis. Figure 5.38a compares the energy spectra observed by the near and far
detectors of the Daya Bay experiment. The measured oscillation parameters for the
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standard deviation of the distribution of the baselines. From [25]

three experiments are,

DC : sin2 2θ = 0.109 ± 0.039,

DB : sin2 2θ = 0.090+0.008
−0.009, Δm2 = 2.59+0.19

−0.20 × 10−3eV2,

RENO : sin2 2θ = 0.113 ± 0.023. (5.45)

At this point, only Daya Bay has given a Δm2 result.
Since these three experiments use different baselines, the baseline dependence of

the neutrino deficits is observed as shown in Fig. 5.39. This baseline dependence of
the neutrino deficits shows

Δm2
31 = 2.95+0.42

−0.61 × 10−3 eV2, sin2 2θ13 = 0.099+0.013
−0.012. (5.46)

Table 5.1 Summary of the widely accepted positive results of oscillation measurements

Experiment Mode Δm2 [eV2] POSC Neutrino source

(1) IMB, Kamiokande, SK, νμ → νμ ∼ ±2.5 × 10−3 ∼ 1 Atmospheric/

K2K, MINOS, T2K νμ → νμ Accelerator

(2) T2K, MINOS νμ → νe ∼ ±2.5 × 10−3 ∼ 0.05 Accelerator

(3) Double Chooz νe → νe ∼ ±2.5 × 10−3 ∼ 0.1 Reactor

Daya Bay, RENO

(4) Homestake, GNO, GALLEX, νe → νe ∼ +8 × 10−5 ∼ 0.4 Solar

SAGE, SK, SNO, Borexino

(5) KamLAND νe → νe ∼ ±8 × 10−5 ∼ 0.8 Reactor

(6) OPERA νμ → ντ ∼ 10−3 – Accelerator

POSC is the approximate disappearance or appearance probability at the corresponding oscillation
maximum. The sign of Δm2 shows the possibility of the mass hierarchy
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5.6 Summary of the Experiments

The Table 5.1 summarizes the positive results for all the neutrino oscillation exper-
iments. Two distinct Δm2 values have been observed, one being much smaller than
the other. These observations are consistent within the framework of three flavor
neutrino oscillations, as will be described in the next chapter.
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Chapter 6
Present Status

Abstract In this chapter, the results from the experiments described in Chap.5
are unified to obtain the three flavor neutrino oscillation parameters. All the mixing
angles, θ12, θ23 and θ13, all the mass squared differences Δm2

21, Δm2
32 and Δm2

31 have
been obtained and Δm2

21 mass hierarchy has been determined. Using the measured
oscillation parameters, the transition amplitudes are calculated assuming the lightest
neutrino mass to be 0 for IH, NH and νe effective mass is used as a parameter for the
degenerate hierarchy case. In order to obtain an insight to an possible mechanism
that may determine a gross pattern of the transition amplitude, νμ − ντ symmetry
and tri-bimaximal mixing are introduced as an example.

Keywords Oscillation parameter · Transition amplitude · Origin of transitions ·
νμ − ντ symmetry · Tri-bimaximal mixing

6.1 Determination of the Three Flavor
Oscillation Parameters

In the formulation of the standard three flavor neutrino oscillation, the parameters to
measure are three mixing angles θ12, θ23, θ13, one CP violating phase δ and three
mass square differences, Δm2

21, Δm2
32 and Δm2

31.
Table5.1 summarized widely accepted positive experimental results for the neu-

trino oscillations. All the experiments except for Table5.1(2) and (6) are disappear-
ance measurements. Usually disappearance data are analyzed using the two flavor
oscillation formula and the correspondence between the measured parameters and
the three flavor neutrino oscillation parameters is not direct. In the following sec-
tions, the measured oscillations probabilities are related to the three flavor neutrino
oscillation parameters and our current knowledge are summarized as the three flavor
neutrino oscillation scheme.
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6.1.1 Assignment of Measured Δm2’s to Δm2
21 and Δm2

31

As we see in Table5.1, the Δm2’s are categorized into two distinct values. One is
Δm2� ∼ 8 × 10−5 eV2 and the other is Δm2⊕ ∼ 2.5 × 10−3eV2, where Δm2� was
recognized by the solar neutrino observations first and Δm2⊕ was recognized by the
atmospheric neutrino observations first.

For three flavor neutrinos, there are three masses, m1, m2 and m3, which make
three combinations of squared mass differences,

Δm2
21 ≡ m2

2 − m2
1, Δm2

32 ≡ m2
3 − m2

2, Δm2
31 ≡ m2

3 − m2
1. (6.1)

The three squared mass differences are not independent,

Δm2
12 + Δm2

23 + Δm2
31 = 0. (6.2)

We define that ν1/2/3 are the main components of νe/μ/τ, respectively and from
the analogy to the relation m2

μ − m2
e � m2

τ − m2
e , we assign

|Δm2
21| = Δm2�, |Δm2

31| = Δm2⊕. (6.3)

Another squared mass difference is

|Δm2
32| = |Δm2

31 + Δm2
12| ∼ |Δm2

31| = Δm2⊕. (6.4)

The difference between |Δm2
31| and |Δm2

32| is only 3% and it is difficult to distinguish
them experimentally. This fact can explain the reason why only the two squaredmass
differences have been experimentally observed.

6.1.2 Oscillations at Oscillation Maximums

As shown in the three flavor oscillation formula (4.91), the oscillation probability
is the sum of the sin2 �i j and sin 2�i j terms. If an experiment is performed at
�31 ∼ π/2,

sin2 �31 ∼ 1, sin2 �32 ∼ 1. (6.5)

On the other hand, �21 = Δm2
21/Δm2

31 × �31 ∼ 0.05 and therefore,

sin2 �21 ∼ 0. (6.6)

Similarly, at �21 ∼ π/2,
sin2 �21 ∼ 1. (6.7)

http://dx.doi.org/10.1007/978-4-431-55462-2_5
http://dx.doi.org/10.1007/978-4-431-55462-2_4
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On the other hand, since �31 = |Δm2
31|/|Δm2

21| × �21 ∼ 50, the oscillation in the

energy spectrum is rapid and sin2 �31 and sin2 �32 are averaged to

sin2 �31 ∼ sin2 �32 → 1/2. (6.8)

These approximations are used to calculate the oscillation probabilities at each base-
line later.

6.1.3 Determination of θ12, θ23 and θ13

The three mixing angles θ12, θ23 and θ13 have been determined by comparing the
observed oscillation probabilities and the three neutrino oscillation formula.

(i) The Double Chooz, Daya Bay and RENO experiments (Table5.1(3)) measure
the reactor νe disappearance probability to be ∼10% at �31 oscillation maximum.
In this case the oscillation probability is, from Eq. (4.95),

Pνe→νe (@�31) = 1 − 4
∑
i> j

sin2 �i j |Uei |2|Uej |2, (6.9)

where “(@�i j )” means “at �i j ∼ π/2”. Since, sin2 �21 ∼ 0 and sin2 �31 ∼
sin2 �32 ∼ 1 at �31 ∼ π/2, the oscillation probability (6.9) is simplified to,

Pνe→νe (@�31) ∼ 1 − 4|Ue3|2(|Ue1|2 + |Ue2|2) ∼ 1 − sin2 2θ13, (6.10)

where the standard mixing parameters in Eq. (4.106) is used. The observed νe dis-
appearance of 10% leads a small sin2 2θ13,

sin2 2θ13 ∼ 0.1. (6.11)

(ii) The atmospheric and accelerator experiments (Table5.1(1)) measure almost
100% νμ → νμ disappearance at �31 = O(1). With the same discussion made in
the case (i), the oscillation probability here is,

Pνμ→νμ(@�31) ∼ 1 − 4|Uμ3|2
(
|Uμ1|2 + |Uμ2|2

)

= 1 − 4c213s223(c
2
23 + s213s223) ∼ 1 − sin2 2θ23 ∼ 0,

(6.12)

where s213 ∼ 0.03 (from Eq. (6.11)) is ignored. The large νμ disappearance observed
leads a large sin2 2θ23,

sin2 2θ23 ∼ 1. (6.13)

http://dx.doi.org/10.1007/978-4-431-55462-2_5
http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_5
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(iii) The KamLAND experiments (Table5.1(5)) measured large reactor νe disap-
pearance around the second oscillation maximum of �21. The disappearance prob-
ability converted to the first oscillation maximum, �21 = π/2 is ∼80%. Using the
approximated sin2 �i j of (6.7) and (6.8), the oscillation probability is expressed as,

Pνe→νe (@�21) ∼ 1 − 4|Ue1|2|Ue2|2 − 2|Ue3|2
(
|Ue1|2 + |Ue2|2

)

∼ 1 − sin2 2θ12 ∼ 0.2,
(6.14)

where the small s213 term is ignored and we obtain

sin2 2θ12 ∼ 0.8. (6.15)

(iv) The solar neutrino experiments measure averaged νe disappearances to be
∼40% where the matter effect is small (Table5.1(4)) . The measured Δm2 is around
10−4 eV2. The oscillation probability is the same as the reactor neutrino case,

Pνe→νe(@sun) ∼ 1 − 4
∑
i> j

sin2 �i j |Uei |2|Uej |2. (6.16)

Since its oscillation length (O(102 km)) is much shorter than the solar size, the
sin2 �21 term is averaged to 1/2. Therefore, the oscillation probability becomes,

Pνe→νe (@sun) ∼ 1 − 2(|Ue2|2|Ue1|2 + |Ue3|2|Ue1|2 + |Ue3|2|Ue2|2)
= 1 − 1

2
sin2 2θ12 ∼ 0.6,

(6.17)

where the small s213 is ignored. The observed disappearance corresponds to
sin2 2θ12/2 and

sin2 2θ12 ∼ 0.8. (6.18)

This is consistent with the KamLAND result of (6.15).
(v) The T2K andMINOS experiments have measured νμ → νe appearance prob-

ability to be ∼5% @�31 (Table5.1(2)). Since this is an appearance measurement,
the ℑ[�μe

i j ] term in Eqs. (4.91) and (4.93) can be finite. However, as it is shown

in Eq. (8.110), this term is suppressed by a factor Δm2
21/Δm2

31 and can be ignored
here. Only sin2 �31 and sin2 �32 are non zero at the oscillation maximum of Δm2

31.
Therefore, the oscillation probability is,

Pνμ→νe (@�31) ∼ −4�
[
�

μe
31 + �

μe
32

]
= s223 sin

2 2θ13 ∼ 0.05. (6.19)

http://dx.doi.org/10.1007/978-4-431-55462-2_5
http://dx.doi.org/10.1007/978-4-431-55462-2_5
http://dx.doi.org/10.1007/978-4-431-55462-2_5
http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_8
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Using the results, (6.11) and (6.13), Pνμ→νe (@�31) is expected to be∼5%,which
is consistent with the observation.

In summary, all the experimental results shown in Table5.1 are consistent with,

sin2 2θ12 ∼ 0.8, sin2 2θ23 ∼ 1 and sin2 2θ13 ∼ 0.1. (6.20)

6.1.4 Determination of Δm2
31 and Δm2

32

The experimentally measured Δm2⊕ was assigned to Δm2
31 as in Eq. (6.3). In fact, the

Δm2⊕ does not correspond directly to Δm2
31, but corresponds to a weighted average

of Δm2
31 and Δm2

32. For the short baseline reactor neutrino experiments, if we do
not employ the approximation of Δm2

31 ∼ Δm2
32, the oscillation probability (6.9)

becomes,

Pνe→νe (@�31) = 1 − sin2 2θ13

(
c212 sin

2 Δm2
31L

4E
+ s212 sin

2 Δm2
32L

4E

)
. (6.21)

If this energy spectrum is analyzed to measure Δm2 assuming two flavor oscillation
formula, the two bumps closely separated in energy distribution are treated as a single
bump and fitted as,

sin2
Δm̂2

31L

4E
∼ c212 sin

2 Δm2
31L

4E
+ s212 sin

2 Δm2
32L

4E
, (6.22)

where Δm̂2
31 is measured as a weighted average of Δm2

31 and Δm2
32 given by,

Δm̂2
31 ∼ c212|Δm2

31| + s212|Δm2
32|. (6.23)

This Δm̂2 is called the effective Δm2 [1].
For the νμ → νμ disappearance observations of the accelerator and atmospheric

neutrinos, the oscillation probability (6.12) can be expanded to,

Pνμ→νμ(@�31) = 1 − sin2 2θ23

×
(
(s212+ cδs13t23 sin 2θ12) sin2

Δm2
31L

4E
+ (c212 − cδs13t23 sin 2θ12) sin2

Δm2
32L

4E

)
,

(6.24)

where t23 = tan θ23 and cδ = cos δ. The effective squared mass difference, Δm̂2
32 is,

similarly to Eq. (6.23), given by,

Δm̂2
32 ∼ (s212+cδs13t23 sin 2θ12)

∣∣∣Δm2
31

∣∣∣+(c212−cδs13t23 sin 2θ12)
∣∣∣Δm2

32

∣∣∣ . (6.25)

http://dx.doi.org/10.1007/978-4-431-55462-2_5
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At first sight, Eq. (6.25) seems to be more complicate than Eq. (6.23). However, it is
due to the definition of the mixing parameters and there is not essential difference.

In principle, |Δm2
31| and |Δm2

32| can be determined from Δm̂2
13 and Δm̂2

32 by
solving the simultaneous equations (6.23) and (6.25) as

(
|Δm2

32|
|Δm2

31|

)
= 1

cos 2θ12 − cδs13t23 sin 2θ12

×
(

c212 −(s212 + cδs13t23 sin 2θ12)
−s212 c212 − cδs13t23 sin 2θ12

) (
Δm̂2

32

Δm̂2
31

)
. (6.26)

However, the errors of the Δm̂2 measurements are still large and it is not practical to
separately determine Δm2

31 and Δm2
32 now.

For Δm2
21 case, the measured Δm2� by the KamLAND and the solar neutrino

experiments directly corresponds to Δm2
21.

Δm2
21 = Δm2�. (6.27)

6.2 Determination of Δm2
21 Mass Hierarchy

Themass hierarchy ofm1 andm2 has been determined to bem1 < m2 bymaking use
of the matter effect of the solar neutrinos. As shown in Fig. 5.29, the solar neutrino
deficit is∼50%at Eν < 2MeVand it increases to∼70%at Eν > 5MeV.The energy
dependence is caused by the matter effect that depends on the mass hierarchy.

The matter density of the sun, ρ� at a radius r can be approximated as [1, Chap. 1]

ρ�(r) ∼ ρ�(0) exp

[
−10

r

R�

]
, (6.28)

where R� ∼ 7.0× 108 m is the radius of the sun and the matter density at the center
of the sun is ρ�(0) ∼ 150 g/cm3.

In principle, it is necessary to deal with the matter effect for the three flavor
neutrinos. The oscillation part of the three flavor state equation with the charged
current weak potential is, from Eq. (4.129),

d

dt

⎛
⎝Ce

Cμ
Cτ

⎞
⎠ = − i

γ

⎛
⎝μe + γVW τ∗

μe τ∗
τe

τμe μμ τ∗
τμ

ττe ττμ μτ

⎞
⎠

⎛
⎝Ce

Cμ
Cτ

⎞
⎠ . (6.29)

In general, it is difficult to solve Eq. (6.29) andwe adopt the following approximation.
In the limit of θ13 → 0, the mixing matrix (4.106) becomes

http://dx.doi.org/10.1007/978-4-431-55462-2_5
http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
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Uν =
⎛
⎝ c12 s12 0

−s12c23 c12c23 s23
s12s23 −s23c12 c23

⎞
⎠ . (6.30)

The mixing matrix for the basis state shown in (4.85) is,

⎛
⎝|ν1〉

|ν2〉
|ν3〉

⎞
⎠ =

⎛
⎝c12 −s12c23 s12s23

s12 c12c23 −c12s23
0 s23 c23

⎞
⎠

⎛
⎝|νe〉

|νμ〉
|ντ〉

⎞
⎠ . (6.31)

This equation can be rearranged as

⎛
⎝|ν1〉

|ν2〉
|ν3〉

⎞
⎠ =

⎛
⎝c12 −s12 0

s12 c12 0
0 0 1

⎞
⎠

⎛
⎝ |νe〉

c23 |νμ〉 − s23 |ντ〉
s23 |νμ〉 + c23 |ντ〉

⎞
⎠ , (6.32)

which shows that |νe〉 and |ν3〉 are decoupled. If we define the new neutrino states
as follows: {

|νξ〉 ≡ c23 |νμ〉 − s23 |ντ〉
|νζ〉 ≡ s23 |νμ〉 + c23 |ντ〉 , (6.33)

νζ is a mass eigenstate,
|νζ〉 = |ν3〉 . (6.34)

The other mass eigenstates are mixings of νe and νξ,

(|ν1〉
|ν2〉

)
=

(
c12 −s12
s12 c12

) (|νe〉
|νξ〉

)
. (6.35)

Therefore, the oscillation occurs between νe and νξ through the mass eigenstates ν1
and ν2 just like the oscillation between νe and νμ for the two flavor case. The solar
neutrinos are generated as νe and oscillate to νξ. Equation (6.33) shows that the ratio
of the oscillation probabilities, Pνe→ντ to Pνe→νμ is tan2 θ23. Since both νμ and ντ
are not affected by the charged current weak potential, νξ is not affected either and
the matter effect of the νe ⇔ νξ oscillation is the same as that for the νe ⇔ νμ
oscillation. Therefore, by substituting νμ → νξ, it is possible to borrow the results
of the matter effect discussed in Sect. 4.3.

The state equation between νe and νξ in matter is, from Eq. (4.131),

d

dt

(
C̃e

C̃ξ

)
= −iω̃�

(
− cos 2θ̃� sin 2θ̃�
sin 2θ̃� cos 2θ̃�

) (
C̃e

C̃ξ

)
, (6.36)

http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
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where, ω̃� = κ�ω0, ω0 = Δm2±/4E(≥ 0) and

κ� =
√

(cos 2θν − υ�)2 + sin2 2θν, tan 2θ̃� = sin 2θν

cos 2θν − υ�
. (6.37)

From Table4.1, the relation between the mixing angles of θ12 and θν are,

θν = θ0 = θ12 for NH and θν = θ0 + π
2

= θ12 + π
2

for IH. (6.38)

This means
cos 2θν = η21

M cos 2θ12, sin 2θν = η21
M sin 2θ12, (6.39)

where η21
M = +1 for the normal hierarchy and η21

M = −1 for the inverted hierarchy.
The neutrinos produced in the sun experience varying density before exiting from

the surface. If a neutrino is generated near the center of the sun, the time dependence
of the potential parameter is, from Eqs. (4.130) and (6.28),

υ�(t) ∼ υ�(0) exp

(
−10

ct

R�

)
, (6.40)

where the relation r = ct is used. The potential parameters at the center of the sun is

|υ�(0)| ∼ 0.25E[/MeV], (6.41)

which depends on the neutrino energy.
The state equation is the same as Eq. (6.36) except for that υ� and therefore, θ̃�

and κ� are functions of the time.

d

dt

(
C̃e

C̃ξ

)
= −iω̃�(t)

(− cos 2θ̃�(t) sin 2θ̃�(t)
sin 2θ̃�(t) cos 2θ̃�(t)

) (
C̃e

C̃ξ

)
, (6.42)

where

ω̃�(t) = κ�(t)ω0,

κ�(t) =
√

(cos 2θ12 − η21
Mυ�(t))2 + sin2 2θ12, (6.43)

and tan 2θ̃�(t) = sin 2θ12
cos 2θ12 − η21

Mυ�(t)
.

The general neutrino wave function in the sun can be expressed by superpositions
of the flavor eigenstates or the energy eigenstates as give by,

|ψ̃ν(t)〉 = C̃e(t) |νe〉 + C̃ξ(t) |νξ〉 = C̃−(t) |ν̃−(t)〉 + C̃+(t) |ν̃+(t)〉 . (6.44)

http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
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Since the mass eigenstate depends on the matter density, the mass eigenstates
|ν̃±〉 are functions of time.

The neutrino oscillation length in the sun is,

λ̃� = π
κ�ω0

= λ0

κ�
, (6.45)

where λ0 is the oscillation length in the vacuum.

λ0 = π
ω0

= 4πE

Δm2±
∼ 33 × (E[/MeV])[km]. (6.46)

Since the energy of the solar neutrinos is less than 20MeV, the neutrino oscillation
length in the sun is, λ̃� < 660km. Therefore, the neutrinos produced deep inside the
sun oscillates many times before they reach the surface. The change of the potential
parameter during each oscillation period is small as shown

∣∣∣∣∣
1

υ�
dυ�
dt

λ̃�
c

∣∣∣∣∣ = 10
λ̃�
R�

< 0.01. (6.47)

The angular velocity of the oscillation in the sun is

ω̃� > sin 2θ12ω0 ∼ π sin 2θ12
33Eν[/MeV] [km] > 1.4 × 103[1/s]. (6.48)

On the other hand, using (6.43),

| ˙̃θ�| = sin 2θ12|υ̇�|
2κ2�

∼ 5

R�
sin 2θ12|υ�|

κ2�
< 2[1/s]. (6.49)

Therefore, we can regard as ω̃� 
 ˙̃θ�.
It is generally difficult to analytically solve Eq. (6.42). However, an approximated

solution can be obtained under the adiabatic condition, ω̃� 
 ˙̃θ�. The calculation
to solve Eq. (6.42) is described in Sect. 8.6 and we use the following result.

C̃±(t) = C̃±(0) exp

⎡
⎣∓i

Δm±
2

t∫
0

κ�(t)dt

⎤
⎦ ≡ C̃±(0) exp [∓i�(t)] , (6.50)

where �(t) corresponds to the time-integrated phase rotation. Equation (6.50) indi-
cates the mass eigenstates stay the original mass eigenstates. The wave function at
time t is

|ψ̃ν(t)〉 = C̃−(0)ei�(t) |ν̃−(t)〉 + C̃+(0)e−i�(t) |ν̃+(t)〉 . (6.51)

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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At t = 0, the neutrino is produced as pureνe. Thus, the initial condition is given by,

|ψ̃ν(0)〉 = |νe〉 = cos θ̃�(0) |ν̃−(0)〉 − sin θ̃�(0) |ν̃+(0)〉 . (6.52)

This relation leads C̃−(0) = cos θ̃�(0) and C+(0) = sin θ̃�(0). At t = TR the
neutrino reaches to the surface of the sun. The neutrino wave function ψ̃ν(TR) can
be written as

|ψ̃ν(TR)〉 = cos θ̃�(0) |ν̃−(TR)〉 ei�(TR) − sin θ̃�(0) |ν̃+(TR)〉 e−i�(TR). (6.53)

The neutrino state at the surface is equivalent to that in the vacuum.

|ν̃±(TR)〉 = |ν±〉 . (6.54)

After that the neutrino travels to the earth taking TA ∼ 500 s. The wave function at
the earth is.

|ψ̃ν(TR + TA)〉 = cos θ̃�(0) |ν−〉 ei(�(TR)− m−
γ TA) − sin θ̃�(0) |ν+〉 e−i(�(TR)+ m+

γ TA)
.

(6.55)
The probability that νe remains as νe at the earth is, using (4.62),

Pνe→νe = | 〈νe|ψ̃ν(TR + TA)〉 |2

=
∣∣∣cos θ̃�(0) cos θνei(�(TR)−(

m−
γ )TA) + sin θ̃�(0) sin θνe−i(�(TR)+(

m+
γ )TA)

∣∣∣2

= 1

2

(
1+ cos 2θ̃�(0) cos 2θν+sin 2θ̃�(0) sin 2θν cos(2�(TR)+ Δm

γ
TA)

)
.

(6.56)

The neutrinos are produced at various places and with random directions in the
sun. Therefore, neutrinos have different TR with the difference much larger than the
oscillation period. The averaging the phase �(TR) results in,

〈cos(2�(TR) + Δm

γ
TA)〉 → 0, (6.57)

and the 3rd term of Eq. (6.56) vanishes. Finally the survival probability of νe is

Pνe→νe ∼ 1

2

(
1 + cos 2θν cos 2θ̃�(0)

)
. (6.58)

Thismeans that the oscillation probability depends only on themixings at the neutrino
generation in the sun, θ̃�(0) and in the vacuum, θν.

http://dx.doi.org/10.1007/978-4-431-55462-2_4
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From Fig. 4.10a,

cos 2θ̃�(0) = cos 2θν − υ�(0)

κ�(0)
= η21

M cos 2θ12 − υ�(0)

κ�(0)
(6.59)

and the survival probability of the solar neutrino is, numerically

Pνe→νe = 1

2

(
1 + cos 2θ12(cos 2θ12 − η21

Mυ�(0))

κ�(0)

)

∼ 1

2

⎛
⎝1 + 0.38(1.5 − η21

M Eν[/MeV])√
(1.5 − η21

M Eν[/MeV])2 + 13.8

⎞
⎠ .

(6.60)

Figure6.1 shows the energy dependence of the solar neutrino survival probabil-
ities for normal hierarchy, inverted hierarchy and the case there is no matter effect.
Comparison with the experimental results in Fig. 6.1 shows,

η21
M > 0, (6.61)

thus Δm2
21 mass hierarchy is determined to be the normal.

Knowing that the Δm2
21 mass hierarchy is normal, the oscillation amplitude and

the heavy neutrino component of νe at a radius r in the sun are

sin2 2θ̃�(r) = sin2 2θ12
κ2�(r)

, sin2 θ̃�(r) = 1

2

(
1 − cos 2θ12 − υ�(0)e(−10r/R�)

κ�(r)

)
,

(6.62)

where

κ�(r) =
√(

cos 2θ12 − υ�(0)e(−10r/R�)
)2 + sin2 2θ12. (6.63)

Fig. 6.1 Energy dependence
of survival probability of the
solar neutrinos for the
normal hierarchy, inverted
hierarchy and no MSW
effect cases. The calculation
was made based on the
approximation of θ13 = 0.
The data points are the
results of the experiments.
See also Fig. 5.29

P
e e

http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_5
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Fig. 6.2 a Oscillation amplitude. b Heavy neutrino component of νe. The horizontal axis is the
relative radius of the neutrino position. The solid, dashed and dotted lines are for 8, 1 and 0.3MeV
solar neutrinos, respectively. The parameter θ̃� is the mixing angle in the sun. The matter density
in the sun is assumed as Eq. (6.28) and θ13 is assumed to be 0

The heavy neutrino component of electron neutrino and oscillation amplitude at
various radius are shown in Fig. 6.2.

The 8MeV neutrinos pass through the resonance region at r ∼ 0.2 R�. Although
the heavy neutrino component is 30% in the vacuum, it is dominant part of electron
neutrinos with energy E = 8MeV at the center of the sun. The matter effect is
small for low energy neutrinos. These dependence on the energy of the matter effect
produce the energy dependence of the solar neutrino deficit.

6.3 Present Knowledge of the Neutrino
Oscillation Parameters

6.3.1 Global Analysis for the Oscillation Parameters

So far, the discussion were made based on the approximations to the two flavor
analysis making use of the properties that two Δm2’s are pretty different and that
sin2 θ13 is small. However, to obtain the oscillation parameters more precisely, it is
necessary to perform a global three flavor oscillation analysis. Table6.1 summarizes
such analysis results taken from Ref. [2].

Using these values, the mixing matrix elements can be numerically calculated as

UNH =
⎛
⎝ 0.82 0.55 − 0.052 + 0.14i

−0.39 + 0.079i 0.64 + 0.053i 0.65
0.40 + 0.090i −0.53 + 0.060i 0.74

⎞
⎠ ,

UIH =
⎛
⎝ 0.82 0.55 − 0.087 + 0.13i

−0.36 + 0.072i 0.65 + 0.048i 0.67
0.43 + 0.079i −0.53 + 0.052i 0.73

⎞
⎠ .

(6.64)
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Table 6.1 Best fit oscillation parameters

Parameter Mass hierarchy case Best fit 1σ range

Δm2
21 7.54× 10−5 eV2 (7.32–7.80)× 10−5 eV2

sin2 θ12 0.308 (0.291–0.325)

Δm2
31 NH 2.47× 10−3 eV2 (2.41–2.53)× 10−3 eV2

IH 2.42× 10−3 eV2 (2.36–2.48)× 10−3 eV2

sin2 θ13 NH 0.0234 (0.0215–0.0254)

IH 0.0240 (0.0218–0.0259)

sin2 θ23 NH 0.437 (0.414–0.470)

IH 0.455 (0.424–0.594)

δ NH 1.39 π (1.12–1.77) π
IH 1.31 π (0.98–1.60) π

The errors of δ are still large and the values may significantly change in the future. From [2]

They show that the mixture between the flavor and mass eigenstates are larger than
the CKM matrix for the quark mixing.

The probabilities of finding mass-eigenstate νk in flavor-eigenstate να is given
by taking the absolute square of each element of (6.64), Pαk = |Uαk |2. For both
hierarchies,

Pαk ∼
⎛
⎝ 0.68 0.30 0.023

0.16 0.42 0.43
0.17 0.28 0.55

⎞
⎠ . (6.65)

6.3.2 Determination of the Transition Matrix Elements

The mixing matrix measured by the experiments are shown in Eq. (6.64). The corre-
sponding transition amplitudes can be calculated from the relation given inEq. (3.59),

T = U MU †, (6.66)

where the absolute values of mi are required for the calculation.
If the absolute electron neutrino mass is measured and the Δm2

31 mass hierarchy
is determined, all the neutrino mass can be determined as follows. In general direct
νe mass experiments measure m2

νe
instead of mνe ,

1

〈m2
νe

〉 = |Ue1|2m2
1 + |Ue2|2m2

2 + |Ue3|2m2
3. (6.67)

1 See Sect. 7.3.1.

http://dx.doi.org/10.1007/978-4-431-55462-2_3
http://dx.doi.org/10.1007/978-4-431-55462-2_7
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Using the observable parameters, m2
i can be determined as follows:

⎧⎪⎨
⎪⎩

m2
1 = 〈m2

νe
〉 − |Ue2|2Δm2

21 − η31
M |Ue3|2|Δm2

31|
m2

2 = 〈m2
νe

〉 + (1 − |Ue2|2)Δm2
21 − η31

M |Ue3|2|Δm2
31|

m2
3 = 〈m2

νe
〉 + η31

M (1 − |Ue3|2)|Δm2
31|

, (6.68)

where η31
M = +1 for Δm2

31 normal hierarchy (NH) (m3 > m1) and η31
M = −1 for

inverted hierarchy (IH) (m3 < m1). For NH,

NH :

⎧⎪⎨
⎪⎩

m2
1 ∼ 〈m2

νe
〉 − 8.1 × 10−5[eV2]

m2
2 ∼ 〈m2

νe
〉 − 5.1 × 10−6[eV2]

m2
3 ∼ 〈m2

νe
〉 + 2.4 × 10−3[eV2].

(6.69)

For IH,

IH :

⎧⎪⎨
⎪⎩

m2
1 ∼ 〈m2

νe
〉 + 3.5 × 10−5[eV2]

m2
2 ∼ 〈m2

νe
〉 + 1.1 × 10−4[eV2]

m2
3 ∼ 〈m2

νe
〉 − 2.4 × 10−3[eV2].

(6.70)

Since we do not know 〈m2
νe

〉 yet, we assume the lightest neutrino mass is 0 to give a
reference situation.

For NH, m3 > m2 > m1 = 0 and
√

〈m2
νe 〉 ∼ 10meV. The neutrino mass matrix

becomes,

MNH(m1 = 0) ∼
⎛
⎝0 0 0
0 8.7 0
0 0 50

⎞
⎠meV. (6.71)

In this case the transition matrix can be calculated using Eq. (6.64) as

TNH(m1 = 0) ∼
⎛
⎝ 3.8 1.4 + 4.5i −4.4 + 5.1i

1.4 − 4.5i 25 21
−4.4 − 5.1i 21 30

⎞
⎠meV. (6.72)

For IH, m2 > m1 > m3 = 0 and
√

〈m2
νe 〉 ∼ 49meV. The mass matrix in this case

is

MIH(m3 = 0) ∼
⎛
⎝49 0 0

0 50 0
0 0 0

⎞
⎠meV. (6.73)

The transition matrix is

TIH(m3 = 0) ∼
⎛
⎝ 48 3.1 − 4.2i 2.9 − 4.6i
3.1 + 4.2i 28 −24
2.9 + 4.6i −24 23

⎞
⎠meV. (6.74)
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If the effective νe mass is much larger than the scale of the mass differences,
〈m2

νe
〉 
 |Δm2

31|, all the neutrino masses become similar, m1 ∼ m2 ∼ m3 ∼ mνe .
This situation is called the degenerate mass hierarchy. For the degenerate mass hier-
archy, the neutrino mass matrix can be approximated as

M
(
〈m2

νe
〉 
 |Δm2

31|
)

∼
√

〈m2
νe 〉 + 1√

〈m2
νe 〉

MΔ, (6.75)

where

MΔ = 1

2

⎛
⎝−|Ue3|2Δm2

31 I +
⎛
⎝−|Ue2|2Δm2

21 0 0
0 (1 − |Ue2|2)Δm2

21 0
0 0 Δm2

31

⎞
⎠

⎞
⎠ .

(6.76)

The transition matrix is,

T
(
〈m2

νe
〉 
 |Δm2

31|
)

=
√

〈m2
νe 〉I + 1√

〈m2
νe 〉

[U MΔU †]. (6.77)

Using the numerical values in Eqs. (6.64), (6.69) and (6.70), the transition amplitudes
are

TNH

(
〈m2

νe
〉 
 |Δm2

31|
)

∼
√

〈m2
νe 〉I + 1√

〈m2
νe 〉

⎛
⎝ 0 −0.29 + 1.2i −0.58 + 1.3i

−0.29 − 1.2i 5.0 5.9
−0.58 − 1.3i 5.9 6.5

⎞
⎠ × 10−4

(6.78)

and

TIH

(
〈m2

νe
〉 
 |Δm2

31|
)

∼
√

〈m2
νe 〉I + 1√

〈m2
νe 〉

⎛
⎝ 0 0.83 − 1.0i 0.66 − 1.1i
0.83 + 1.0i −5.0 −6.0
0.66 + 1.1i −6.0 −6.1

⎞
⎠ × 10−4,

(6.79)

where the unit is in [eV2].
What causes these transitions is an important question. The standard model does

not include these transitions and new physics is supposed to exist in them. It is
instructive to compare with the quark transition matrix,
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Tquark = VCKM

⎛
⎝md 0 0

0 ms 0
0 0 mb

⎞
⎠ V †

CKM ∼
⎛
⎝ 10 20 8 − 14i

20 90 170
8 + 14i 170 4200

⎞
⎠MeV. (6.80)

For the quark case, these transitions are generated by the Yukawa coupling to the
Higgs field in the standard model and the transition amplitudes correspond to the
product of the coupling constants and the Higgs vacuum expectation value. For
neutrinos, because the transition amplitudes are extremely smaller than quark’s, it
is believed to be unnatural to think that the origin of the transitions are the same as
quarks. What is the origin of the neutrino transitions is an important open question.

6.4 νμ − ντ Symmetry and Tri-bimaximal Mixing

Before the θ13 was measured to be finite, it was thought that it could be zero due
to some kind of symmetry. νμ − ντ symmetry is one of such possibilities which
predicts sin2 2θ13 = 0 and sin2 2θ23 = 1. Although sin2 2θ13 turned out to be finite,
it is small and the νμ − ντ symmetry seems to approximately hold. It is instructive
to see how such the symmetry determines the mixing angles and masses.

The θ12 is measured to be large but not maximal. The observed mixing angles
can be approximated by the so-called tri-bimaximal mixing. In this section, we will
play with a toy model of the νμ − ντ symmetry and study the relation between the
tri-bimaximal mixing and transition amplitudes.

6.4.1 A Toy Model for νμ − ντ Symmetry

We assume neutrino transition amplitudes do not change by swapping νμ and ντ. In
this case, a possible neutrino state equation is,

d

dt

⎛
⎝Ce

Cμ
Cτ

⎞
⎠ = − i

γ

⎛
⎝μe τe� τe�

τe� μ� τμτ
τe� τμτ μ�

⎞
⎠

⎛
⎝Ce

Cμ
Cτ

⎞
⎠ , (6.81)

where the imaginary phase is omitted to make discussions simple. This is justified
by the fact that s13 = 0 is derived from the νμ − ντ symmetry and the imaginary
phase does not appear in the probabilities. In addition, τe� ≥ 0 and μ� + τμτ > μe
are assumed to reduce the complexity from the unnecessary degrees of freedom. We
obtain the following mixing matrix from Eq. (6.81).2

2 It is difficult to derive Eqs. (6.82)–(6.86) by hand calculation (the author used Mathematica).
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⎛
⎝Ce

Cμ
Cτ

⎞
⎠ = 1√

2

⎛
⎝

√
2 cos φ

√
2 sin φ 0

− sin φ cos φ 1
sin φ − cos φ 1

⎞
⎠

⎛
⎝C1

C2
C3

⎞
⎠ , (6.82)

where

tan 2φ = 2
√
2τe�

μ� − μe + τμτ
. (6.83)

Overall sign of the wave functions is chosen for ease to the later discussion. One of
the elements of the mixing matrix turns out to be 0 and we assign it to the element
Ue3.

On the other hand, themixingmatrix expressed by the standard parameters (4.106)
with θ13 = 0 is written as

⎛
⎝Ce

Cμ
Cτ

⎞
⎠ =

⎛
⎝ c12 s12 0

−s12c23 c12c23 s23
s12s23 −c12s23 c23

⎞
⎠

⎛
⎝C1

C2
C3

⎞
⎠ . (6.84)

From the comparison with (6.82), the mixing angles are determined as follows:

θ13 = 0, θ23 = π
4
, θ12 = φ. (6.85)

Therefore, the νμ − ντ symmetry can explain both the small sin2 2θ13 and large
sin2 2θ23 at once.

The observed relationm2 > m1 determines the correspondence between the flavor
eigenstates and mass eigenstates. The masses are,

m1 = 1

2

(
μe + μ� + τμτ −

√
8τ2e� + (μ� − μe + τμτ)2

)
,

m2 = 1

2

(
μe + μ� + τμτ +

√
8τ2e� + (μ� − μe + τμτ)2

)
, (6.86)

m3 = μ� − τμτ.

Note that m1 + m2 + m3 = μe + 2μ� and m2 > m1 are satisfied.

6.4.2 Tri-bimaximal Mixing

The measured sin2 θ12 is close to 1/3 as shown in Table6.1. Therefore, sin θ12 can be
approximated to be sin θ12 = 1/

√
3. sin θ23 = 1/

√
2 and sin θ13 = 0 are predicted

from the assumption of the νμ −ντ symmetry. In this case, the mixingmatrix become

http://dx.doi.org/10.1007/978-4-431-55462-2_4
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UTBM =
⎛
⎝

√
2/3 1/

√
3 0

−1/
√
6 1/

√
3 1/

√
2

1/
√
6 −1/

√
3 1/

√
2

⎞
⎠ ∼

⎛
⎝ 0.82 0.58 0

−0.41 0.58 0.71
0.41 −0.58 0.71

⎞
⎠ . (6.87)

This approximation roughly agrees with the measurement (6.64). This is called the
tri-bimaximal mixing (TBM). In our toymodel, the TBMmixing of θ12 can be related
to the transition parameters as follows:

tan 2θ12 = 2
√
2 = tan 2φ = 2

√
2τe�

μ� − μe + τμτ
, (6.88)

which can be satisfied if there is following relation,

μ� + τμτ = μe + τe�. (6.89)

In this case, the relation between the mass and transition amplitudes is, from
Eq. (6.86),

⎛
⎝m1

m2
m3

⎞
⎠ =

⎛
⎝ 1 0 −1

1 0 2
−1 2 − 1

⎞
⎠

⎛
⎝μe

μ�

τe�

⎞
⎠ , (6.90)

and the transition matrix is,

T = m1 + m2 + m3

3
+ 1

6

⎛
⎝−2Δm31 2Δm21 2Δm21

2Δm21 Δm31 −Δm31 − Δm32
2Δm21 −Δm31 − Δm32 Δm31

⎞
⎠ . (6.91)
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Chapter 7
Future Possibilities of Neutrino Oscillation
Experiments

Abstract In this chapter, possibility for the future neutrino experiments are
discussed. The remaining issues of neutrino oscillation studies are, to measure the CP
violation parameter δ, to determine Δm2

31 mass hierarchy and the θ23 octant degener-
acy. Approximated neutrino oscillation formulas with matter effects are introduced
first and then possibilities of future experiments to address the remaining issues are
discussed based on them. There are anomalies in various neutrino oscillation experi-
ments which can be explained if there is fourth neutrino that is called sterile neutrino.
The search for the sterile neutrino is another important subject in the future neutrino
oscillation experiments and is discussed here. In order to determine the transition
amplitudes, the absolute neutrino mass is necessary in addition to the neutrino oscilla-
tion parameters. The relation between the measured neutrino oscillation parameters
and possible absolute mass measurements are discussed. Finally the neutrino-less
double beta decay experiment, that can determine the absolute neutrino mass and
whether the neutrino is Majorana particle or Dirac particle, is explained.

Keywords CP violation · Mass hierarchy · θ23 degeneracy · Sterile neutrino ·
Majorana particle · Double beta decay

7.1 Measurement of Remaining Oscillation Parameters

The remaining issues for the neutrino oscillation experiments are,

(1) Measurement of CP violation δ,
(2) Δm2

31 mass hierarchy determination,
(3) Solution for θ23 octant degeneracy,
(4) Solving sterile neutrino anomalies.

In addition to the oscillation measurements,

(5) Absolute neutrino mass measurement is necessary to determine the transition
amplitudes.

All of these issues require high precision measurements to solve.
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7.1.1 Approximated Oscillation Formulas
with Known Parameters

As we have seen, the leading components of the neutrino oscillation parameters have
been measured. The future experiments are to measure the sub-leading terms and
more precise oscillation formulas are necessary to evaluate the possibilities.

In the studies of neutrino oscillation, the experimental conditions are often
arranged so as to detect the neutrinos near an oscillation maximum. Therefore, it
is useful to approximate the oscillation probability formulas around the oscillation
maximums by making use of the smallness of |Δm2

21/Δm2
31| and s2

13.
The ratio of the observed two squared mass differences is,

εm ≡ Δm2
21

Δm2
31

= �21

�31
∼ ±0.03. (7.1)

Since it is known that Δm2
21 > 0, the “+” sign corresponds to the normal Δm2

31
mass hierarchy (m3 > m1) and the “−” sign corresponds to the inverted hierarchy
(m3 < m1). Note that always εm�31 = �21 > 0.

The size of the small mixing angle θ13 is

s2
13 ∼ 0.026. (7.2)

Therefore, εm and s2
13 have the similar smallness and it is appropriate to approximate

the oscillation formulas by powers of them. The following approximations can be
used up to the relative order O(s2

13),

c13 ∼ c2
13 ∼ 1, sin 2θ13 ∼ 2s13. (7.3)

For three flavor neutrino oscillations, there are three oscillation maximums, corre-
sponding to �21 = π/2, |�31| = π/2 and |�32| = π/2. However, we have identified
only two oscillation maximums by the experiments which can be explained by the
fact that the Δm̂2

32 and Δm̂2
31 maximums differs only 3 % or less.

For neutrino oscillations at �31 ∼ π/2, �21 is small and the following approxi-
mations can be made.

sin 2�21 = sin 2εm�31 = 2εm�31 + O(ε3
m),

sin2 �21 = sin2 εm�31 = 0 + O(ε2
m).

(7.4)

Using the relation

�32 = �31 − �21 = (1 − εm)�31, (7.5)
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sin 2�32 and sin2 �32 can be approximately related to �31 as follows:

sin 2�32 = sin 2�31 − 2εm�31 cos 2�31 + O(ε2
m),

sin2 �32 = sin2 �31 − εm�31 sin 2�31 + O(ε2
m). (7.6)

Calculations for the approximation of the oscillation probabilities are described in
Sect. 8.5.

The oscillation probability @�31 is given by Eq. (8.111),

Pνα→νβ(@�31) = δαβ − 4|Uα3|2(δαβ − |Uβ3|2) sin2 �31

+ 8εm�31 sin �31�[�αβ
32 ei�31 ] + O(ε2

m).
(7.7)

The reactor νe neutrino experiments @�31 measure the oscillation probability,

Pνe→νe(@�31) = 1 − sin2 2θ13 sin2 �31 + O(ε2
m)

∼1 − 0.1 sin2 �31 + O(10−3).
(7.8)

The atmospheric and accelerator neutrino experiments which observe the νμ dis-
appearance measure the oscillation probability,

Pνμ→νμ(@�31) = 1 − (sin2 2θ23 − s2
23 sin2 2θ13 cos 2θ23) sin2 �31

+ εm�31 sin 2�31(c
2
12 sin2 2θ23 − s2

23 J123 cos δ) + O(ε2
m)

∼ 1 − sin2 �31 + 0.021�31 sin 2�31 + O(10−3),

(7.9)

where a parameter,

J123 ≡ sin 2θ12 sin 2θ23 sin 2θ13 ∼ 0.29 (7.10)

is used.
For νμ → νe and νμ → ντ appearance measurements, the probabilities are

given by,

Pνμ→νe (@�31) = s2
23 sin2 2θ13 sin2 �31+ εm�31 sin �31 J123 cos(�31+ δ)+O(ε2

m)

∼ 0.05(sin2 �31 + 0.18�31 sin �31 cos(�31 + δ)) + O(10−3),

(7.11)

and

Pνμ→ντ(@�31) = cos 2θ13 sin2 2θ23 sin2 �31

− εm�31 sin �31

(
2c2

12 sin2 2θ23 cos �31
− J123(sin �31 sin δ− cos 2θ23 cos �31 cos δ)

)
+O(ε2

m)

∼ (0.949 − 0.01�31 sin δ) sin2 �31 − 0.021�31 sin 2�31 + O(10−3).

(7.12)

http://dx.doi.org/10.1007/978-4-431-55462-2_8
http://dx.doi.org/10.1007/978-4-431-55462-2_8
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Fig. 7.1 Oscillation probabilities @�31

Those oscillation probabilities at the �31 oscillation maximum are graphically
summarized in Fig. 7.1. The oscillation probabilities for anti-neutrinos and for the
oscillation of the reverse direction can be obtained by changing the sign of δ, such
as δ → −δ. For example, both Pνμ→νe and Pνe→νμ can be expressed from the same
equation,

Pνμ→νe = Pνe→νμ = P∗
νμ→νe

, (7.13)

where P∗
X is the probability obtained by changing the sign of δ in the formula of PX .

The disappearance probability can be calculated by summing the two appearance
probabilities from the same source. For example,

1 − Pνe→νe = Pνe→νμ + Pνe→ντ . (7.14)

Note that the appearance probabilities depend on sin δ. However, if the two appear-
ance probabilities from the same source are summed to obtain the disappearance
probability, the sin δ terms completely cancel out. This means that CP violation has
to be searched for by using the appearance experiments.

For oscillations @�21, only νe and νe disappearances have been measured. Near
the L/E relation @�21, the oscillation phases of �31 and �32 are,

�31 ∼ �32 = �21

εm
∼ O(30). (7.15)

This means the oscillation phase changes by 100 % for 3 % of the energy difference.
If the energy uncertainty of the experiment is larger than 3 %, the oscillation patterns
due to �31 and �32 oscillations are washed out and only averaged effect is observed.
The averaging of the �31 oscillation can be approximated as,
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sin2 �31 ∼ sin2 �32 = sin2(�21/εm) → 1
2 ,

sin 2�31 ∼ sin 2�32 = sin 2(�21/εm) → 0.
(7.16)

In this case, the general oscillation probability formula is, from Eq. (8.119), given by

Pνα→νβ(@�21) = δαβ(1 − 2|Uα3|2) + 2|Uα3|2|Uβ3|2 − 4 sin �21ℑ
[
�

αβ
21 ei�21

]
.

(7.17)

For the survival probability of electron type neutrino is,

Pνe→νe(@�21) = Pνe→νe (@�21) = cos 2θ13(1 − sin2 2θ12 sin2 �21) + O(s4
13)

∼ 0.95(1 − 0.85 sin2 �21) + O(10−3). (7.18)

This means that the solar and reactor experiments @�21 have a slight dependence
on θ13 through cos 2θ13. This disappearance probability is the sum of the following
two appearance probabilities,

Pνe→νμ(@�21) = 1
2 s2

23 sin2 2θ13 + c2
13 sin 2θ12 sin �21×(

((c2
23 − s2

23s2
13) sin 2θ12 + s13 sin 2θ23 cos 2θ12cδ) sin �21

− s13 sin 2θ23sδ cos �21

)
(7.19)

and

Pνe→ντ(@�21) = 1
2 c2

23 sin2 2θ13 + c2
13 sin 2θ12 sin �21×(

((s2
23 − c2

23s2
13) sin 2θ12 − s13 sin 2θ23 cos 2θ12cδ) sin �21

+ s13 sin 2θ23sδ cos �21

)
.

(7.20)

Note that if probabilities (7.19) and (7.20) are summed, several terms are canceled
out and sin2 θ23 and cos2 θ23 terms are added to unity. As a result, δ terms vanish and
the disappearance probability becomes very simple as shown in (7.18). Figure 7.2
summarizes the oscillation formulas at @�21.

7.1.2 CP Violation δ

It is important to measure the CP violation in lepton interactions to study the origin
of the flavor mixing and to understand its effect to our world. At the beginning of our
universe, matter and antimatter are supposed to be produced the same amount. How-
ever, the current universe consists mainly of the matter. This means a CP violating
process should have taken place in the history of the universe. A CP violation effect
is introduced in the standard neutrino oscillation formula as an imaginary component

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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Fig. 7.2 Oscillation probabilities at �21 = π/2. Oscillation between νμ and ντ @�21 has not been
observed yet

of the fermion mixing matrix. The probability of the CP violation is proportional to
the Jarlskog invariant [1] defined by

Jr = s12c12s23c23s13c2
13 sin δ. (7.21)

This means the CP violation effect depends on all the mixing matrix parameters.
CP violation has already been measured in quark interactions. However, for the

quark case, all the mixing angles are small and the Jarlskog invariant is only Jq ∼
3 × 10−5. It is thought that the CP violation observed in the quark interactions is too
small to explain the current matter dominance of the universe. For lepton case, θ12
and θ23 are large and recently θ13 turned out to be finite and the Jarlskog invariant
for neutrino mixing is Jν ∼ 4 × 10−2 sin δν, which can be 1,000 times larger than
Jq and the Jν may be able to explain the current matter dominant universe.

The neutrino CP violation effect can be measured from the asymmetry between
Pνμ→νe and Pνμ→νe at around the oscillation maximum of �31 = 0(1),

ACP = Pνμ→νe (@�31) − Pνμ→νe(@�31)

Pνμ→νe (@�31) + Pνμ→νe(@�31)

∼ −εm�31 sin �31 J123 sin δ
s2

23 sin2 2θ13 sin �31 + εm�31 cos �31 J123 cos δ
. (7.22)

The CP asymmetry at the oscillation maximum �31 = π/2 is calculated to be,

ACP ∼ − π sin 2θ12

tan θ23 sin 2θ13
εm sin δ ∼ −0.27 sin δ. (7.23)

At first sight, it seems that smaller θ13 is better to detect the CP violation because
the ACP is proportional to 1/ sin 2θ13 in Eq. (7.23) and becomes larger. However, in
actual experiments, the number of νμ → νe and νμ → νe events are proportional
to sin2 2θ13 and the statistic uncertainty, (σstat.), is also proportional to 1/ sin 2θ13.
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Table 7.1 Long baseline accelerator experiments [2]

Project Baseline (km) Accelerator→Detector Status (2014)

K2K 250 KEK→Kamioka Completed

T2K 295 JPARC→Kamioka On going

Hyper Kamiokande 295 JPARC→Kamioka Proposed

OPERA 730 CERN→Gran Sasso On going

ICARUS 730 CERN→Gran Sasso On going

MINOS 735 Fermi→Soudan Completed

NOVA 810 Fermi→Ash River Under construction

LBNE 1,300 Fermi→Sanford Lab Proposed

LENA 2,290 CERN→Finland Proposed

GLACIER – – Proposed

Therefore, the significance of detecting CP asymmetry, ACP/σstat., is rather insensi-
tive to the θ13 value when the statistic error dominates. A number of long baseline
accelerator experiments are proposed as listed in Table 7.1.

There is a difficulty to measure the CP violation using this asymmetry. In order to
measure the oscillation probabilities, νμ or νμ beam with energy of order of GeV are
sent to a detector at several hundred kilometers away. Since the earth is spherical,
the neutrino beam goes through the underground of the earth. From Eq. (4.142), the
matter effect of the earth on the oscillation can be significantly large. The matter
effect comes from the weak potential and its sign is opposite for the neutrinos and
the antineutrinos. This indicates that the neutrino oscillation probability in matter is
different for neutrinos and antineutrinos and a spurious CP asymmetry is generated.
The effect of this spurious CP asymmetry is discussed in the next subsection.

7.1.3 Earth Matter Effect for High Energy Neutrinos

In order to evaluate the earth matter effect, it is necessary to solve the three-flavor
state equation (6.29). However in general, the derivation is very complicated. We will
simplify the discussion by using the following approximations. We can not ignore
the θ13 terms this time because the leading term of the νμ → νe probability (7.11)
starts with sin2 2θ13. At a baseline of sin2 �13 ∼ O(1), sin2 �12 ∼ 0 and we can
regard effectively m2 ∼ m1 in the calculation. Therefore, the mass matrix can be
approximated as

M =
⎛
⎝m1 0 0

0 m1 0
0 0 m3

⎞
⎠ . (7.24)

The transition matrix in this case is,

http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_6
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T = Uν MU †
ν = m1 + Δm31

⎛
⎜⎝

s2
13 s13c13s23e−iδ s13c13c23e−iδ

s13c13s23eiδ c2
13s2

23 c2
13s23c23

s13c13c23eiδ c2
13s23c23 c2

13c2
23

⎞
⎟⎠ ,

(7.25)

where Δm31 = m3 − m1. Note that θ12 has disappeared and the state equation can
be written simply as

d

dt

⎛
⎝Ce

Cζ
Cξ

⎞
⎠ = − i

γ

⎡
⎣m1 + Δm31

⎛
⎝ s2

13 s13c13e−iδ 0
s13c13eiδ c2

13 0
0 0 0

⎞
⎠

⎤
⎦

⎛
⎝Ce

Cζ
Cξ

⎞
⎠ , (7.26)

where (
Cξ
Cζ

)
=

(
c23 −s23
s23 c23

)(
Cμ
Cτ

)
. (7.27)

Cξ is decoupled from Ce and the state equation between Ce and Cζ is

d

dt

(
Ce

Cζ

)
= − i

γ

[
m31 + Δm31

2

(− cos 2θ13 sin 2θ13e−iδ

sin 2θ13eiδ cos 2θ13

)] (
Ce

Cζ

)
, (7.28)

where m31 = (m1 + m3)/2. The matter effect is obtained by adding the weak
potentials to the transition matrix,

d

dt

(
Ce

Cζ

)
= −i

[
m0 + Δm2

31

4E

(− cos 2θ13 + υ⊕ sin 2θ13e−iδ

sin 2θ13eiδ cos 2θ13 − υ⊕

)] (
Ce

Cζ

)
,

(7.29)

where m0 = m2
31/E + VZ + VW /2 and υ⊕ is the potential parameter of the earth.

Equation (7.29) has a similar form as Eq. (4.129). The probability of the oscillation
νe → νζ in matter can be obtained by substituting (θν, ω0, υW ) in Eqs. (4.136),
(4.132) by (θ13, Δm2

31/4E, υ⊕), respectively,

Pνe→νζ(@�31) = sin2 2θ13

κ2⊕
sin2 κ⊕�31, (7.30)

where

κ⊕ =
√

(cos 2θ13 − υ⊕)2 + sin2 2θ13 ∼ 1 − υ⊕. (7.31)

http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
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On the other hand,

Pνe→νξ(@�31) = 0, (7.32)

and therefore, the survival probability of νe is

Pνe→νe (@�31) = 1 − sin2 2θ13

κ2⊕
sin2 κ⊕�31, (7.33)

Since the νμ component of νζ is s23, the νe → νμ oscillation probability is,

Pνe→νμ(@�31) = s2
23

sin2 2θ13

κ2⊕
sin2 κ⊕�31. (7.34)

Similarly,

Pνe→ντ(@�31) = c2
23 sin2 2θ13

κ2⊕
sin2 κ⊕�31. (7.35)

From the CPT invariance,

Pνμ→νe = P∗
νe→νμ

= s2
23 sin2 2θ13

κ2⊕
sin2 κ⊕�31. (7.36)

As for the calculations of the matter effect for higher order terms, we borrow the
results from Refs. [3, 4],

Pνμ→νe (@�31) ∼s2
23 sin2 2θ13

sin2 (κ⊕�31)

κ2⊕

+ εm J123
sin (κ⊕�31)

κ⊕
sin(υ⊕�31)

υ⊕
cos(�31 + δ).

(7.37)

The signs of υ⊕, �31 and εm depend on the mass hierarchy and the signs of υ⊕ and
δ change for antineutrinos as shown in Table 7.2. We can write the signs of those
parameters explicitly as follows:

υ⊕ → ηCη31
M |υ⊕|, �31 → η31

M |�31|, εm → η31
M |εm | and δ → ηCδ, (7.38)

where η31
M = ±1 for normal and inverted hierarchy and ηC = ±1 for neutrino and

antineutrino oscillations, respectively.
Using the sign parameters, a oscillation formula which includes the antineutrino

and inverted mass hierarchy is written as,
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Table 7.2 Sign of the parameters for ν, ν and Δm2
31 mass hierarchy

Pνμ→νe (@�31) ∼ s2
23 sin2 2θ13

sin2
(
(1 − η31

M ηC|υ⊕|)|�31|
)

(1 − η31
M ηC|υ⊕|)2

+ η31
M |εm |J123

sin
(
(1 − η31

M ηC|υ⊕|)|�31|
)

(1 − η31
M ηC|υ⊕|)

sin(|υ⊕||�31|)
|υ⊕| (7.39)

× cos(η31
M |�31| + ηCδ).

It is useful to express υ⊕ as a function of the baseline L and the oscillation phase �

to evaluate the matter effects of various experiments. From (4.130),

υ = 2
√

2EνG F ne

Δm2 = G F ne√
2�

L = 1

�

L

L M
, (7.40)

where L M ≡ √
2/G F ne is a typical length of the matter effect. For the earth matter

effect, it is

L M → L⊕ ∼ 1.4 × 10−12 cm3MeV2 ∼ 3,500 km from ρ⊕ = 3 g/cm3. (7.41)

Usually oscillation experiments are performed at � ∼ π/2 where |υ⊕| =
L/5,800 km. For T2K or HyperKamiokande experiments, L ∼ 300 km and |υ⊕| ∼
0.05 and for NOVA experiment, L ∼ 800 km and |υ⊕| ∼ 0.15 and the oscil-
lation probability at the oscillation maximum can be further approximated from
Eq. (7.39) as

Pνμ→νe (@�31 = π/2) ∼ s2
23 sin2 2θ13

(1 − η31
M ηC|υ⊕|)2

− ηC
π
2

|εm |J123 sin δ
(1 − η31

M ηC|υ⊕|) + O(υ2⊕).

(7.42)

Figure 7.3 shows the baseline dependence of the νμ → νe appearance probability
assuming sin δ = −1 and sin2 2θ23 > 0.97. By combining two oscillation measure-
ments at different baselines, the intercept to the L = 0 axis in Fig. 7.3, where there
is no matter effect, can be determined. The oscillation probability at the intercept is

Pνμ→μe
(@|�31| = π/2, L = 0) = s2

23 sin2 2θ13 − ηC
π
2
|εm |J123 sin δ. (7.43)

http://dx.doi.org/10.1007/978-4-431-55462-2_4
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Fig. 7.3 Baseline
dependence of νμ → νe
appearance probability at the
�31 oscillation maximum.
The horizontal axis is the
baseline. The vertical axis is
Pνμ→νe . The thin vertical
lines show the ambiguity
from the θ23 octet
degeneracy. The positions of
the intercept at L = 0 for
sin δ = 0,±1 are shown.
The baselines of the T2K and
NOVA are shown
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Since θ23, θ13, J123 and εm can be measured elsewhere, it may be possible to deter-
mine sin δ from the measurement.1

Currently T2K is in operation and NOVA is about to start. It is expected that the
probability (7.43) will be measured in the near future.

7.1.4 θ23 Octant Degeneracy

The largest uncertainty in Eq. 7.43, except for sin δ comes from θ23. θ23 has been
measured from the νμ disappearance near Δm2

31 maximum to be sin2 2θ23 ∼ 1.
However, there are two possible values of s2

23 for a given sin2 2θ23 as follows,

s2
23 = 1 ±

√
1 − sin2 2θ23

2
. (7.44)

Since the difference between the two solutions is
√

1 − sin2 2θ23, it can be large even
if (1 − sin2 2θ23) is small. For example, if sin2 2θ23 is measured to be sin2 2θ23 >

0.97, the range of the possible s2
23 is 0.41 < s2

23 < 0.59, which corresponds to as
much as ±20 % of uncertainty. This is called the octant θ23 degeneracy problem. As
can be seen in Fig. 7.3, the non-0 sin δ can not be confirmed better than 2σ significance
even if | sin δ| = 1 due to this uncertainty for sin2 2θ23 > 0.97. In order to solve this
problem, it is necessary to show sin2 2θ23 is very close to unity or determine which
solution is correct by combining other oscillation measurements.

1 Strictly speaking, this is not a measurement of the CP asymmetry. The measured sin δ can be
associated with the CP asymmetry effect when the standard three flavor neutrino scheme is correct.
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7.1.5 CP Asymmetry and the Matter Effect

As shown in Sect. 7.1.2, the CP violation phase δ can be measured from the difference
of the probabilities of the νμ → νe and νμ → νe oscillations. The CP asymmetry to
be observed under existence of the earth matter effect is given by,

ACP(�31 = π/2) = Pνμ→μe
− Pνμ→νe

Pνμ→μe
+ Pνμ→νe

∼ − π|εm | sin 2θ12

tan θ23 sin 2θ13
sin δ + 2η31

M |υ⊕|

∼ −0.27 sin δ ± L

2,800 (km)
. (7.45)

This relation shows that the matter effect (the second term) gives an spurious
asymmetry as large as the true CP violation asymmetry (the first term) if the baseline
is several hundreds kilometers or more. Figure 7.4 shows the baseline dependence of
ACP with matter effect. To measure the sin δ, it is necessary to remove the effect of the
spurious asymmetry caused by the matter effect unless the baseline is very short. By
combining two measurements at different baselines, it is possible to know the mass
hierarchy and to obtain the genuine CP asymmetry. A difficulty of the measurement
is that the probability of νμ → νe oscillation is only ∼5 % and the CP asymmetry is
a fraction of it. Moreover, the νe-nucleus reaction cross sections are 1/3 of the νe+
nucleus cross sections and three time more νμ flux is necessary to obtain equivalent
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Fig. 7.4 Baseline dependence of ACP. The horizontal axis is the baseline. The vertical axis is the
asymmetry, ACP. The thin vertical lines show the ambiguity from the θ23 octant degeneracy. The
positions of the intercept at L = 0 for sin δ = 0,±1 are shown. The baselines of the T2K and
NOVA are shown
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statistic uncertainties to the νe detection. Therefore, a very high neutrino flux and
large detector mass are necessary to measure the CP violation.

7.1.6 Determination of the Δm2
31 Mass Hierarchy

Determining the Δm2
31 mass hierarchy is an important next experimental target, not

only for the CP asymmetry measurement but because it is related to the lower limit of
the absolute neutrino masses. As we will see in Sect. 7.3, if the Δm2

31 mass hierarchy
is IH, the νe mass can be predicted to be 50 meV or more. Also there is the minimum
double beta decay mass of ∼15 meV which will become a next good target sensitivity
for neutrino-less double beta decay experiments. Either neutrino is Majorana or Dirac
particle can be definitely determined with this sensitivity.

The matter effect changes the sign of the weak potential depending on the mass
hierarchy and if the sign of the matter effect can be measured, the mass hierarchy can
be determined. The Δm2

21 mass hierarchy η21
M was measured by matter effect of the

solar neutrino oscillation. Similarly η31
M can in principle be measured by the matter

effect for �31 oscillations. One possibility is the already-described baseline depen-
dence of Pνμ→μe

or ACP, shown in Figs. 7.3 and 7.4. Although there is ambiguity
due to θ23 degeneracy, it is independent of the baseline. Therefore, the slopes of the
baseline dependence of these parameters are not sensitive to the θ23 ambiguity.

7.1.6.1 Direct Δm̂2 Comparison

In principle, the Δm2
31 mass hierarchy can be determined by comparing |Δm2

31| and
|Δm2

32|. Since Δm2
12 + Δm2

23 + Δm2
31 = 0 and Δm2

21 > 0, |Δm2
31| > |Δm2

32| means
the normal hierarchy and |Δm2

31| < |Δm2
32| means the inverted hierarchy.

One straightforward way is to compare the effective mass squared differences,
Δm̂2

31 and Δm̂2
32 which are shown in Eqs. (6.23) and (6.25).

The difference between Δm̂2
31 and Δm̂2

32 is expressed from (6.26) as,

2(Δm̂2
31 − Δm̂2

32)

Δm̂2
31 + Δm̂2

32

∼ ± (1 − s12t23 tan 2θ12 cos δ)
2 cos 2θ12|Δm2

21|
|Δm2

31| + |Δm2
32|

(7.46)

∼ ± 0.012 × (1 ± 0.3),

where the overall sign depends on mass hierarchy and the ambiguity of ±0.3 comes
from the unknown δ. If Δm̂2

31 > Δm̂2
32, it is normal hierarchy and vice versa. In

order to determine the mass hierarchy, it is necessary to distinguish the difference
of 1.7 ∼ 3.1% depending on δ. Δm̂2

32 has been measure with a precision of a few %
by the MINOS and T2K experiments and Δm̂2

31 has been measured with precision
of ∼10 % by the Daya Bay experiment. A difficult point of this method is that
Δm̂2

32 and Δm̂2
31 are measured using neutrinos with very different energy scales and

http://dx.doi.org/10.1007/978-4-431-55462-2_6
http://dx.doi.org/10.1007/978-4-431-55462-2_6
http://dx.doi.org/10.1007/978-4-431-55462-2_6
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energy spectra, with different neutrino detection scheme. Therefore, it is not easy to
reduce the relative systematic errors between the measurements to such accuracy.

7.1.6.2 Reactor Experiment at the First �12 Oscillation Maximum

There is another idea to determine the mass hierarchy by reactor based experiments
[5]. The complete formula for the reactor neutrino disappearance is, from Eq. (4.95),

Pνe→νe = 1 − 4
∑
i> j

|Uei |2|Uej |2 sin2 �i j

(7.47)

= 1 − c4
13 sin2 2θ12 sin2 �21 − sin2 2θ13(c

2
12 sin2 �31 + s2

12 sin2 �32).

The spectrum is a overlay of constant term plus terms of three oscillation frequencies.
At the first oscillation maximum of �12, which corresponds to a baseline of L ∼
50 km, the constant term and the �21 term in Eq. (7.47) are suppressed and the
contributions of the �32 and the �31 terms are relatively enhanced. If the energy
spectrum is analyzed by the Fourier analysis with a parameter 1/Eν, three peaks at

ω = |Δm2
31|, |Δm2

32| and |Δm2
21| (7.48)

shall be observed in the frequency space. The Δm2
21 peak locates much lower than

the Δm2
31 and Δm2

32 peaks in the frequency and can be distinguished easily. Δm2
31 and

Δm2
32 peaks are expected to separate by 3 % apart. Because s2

12 ∼ 0.3, s2
12 < c2

12 and
the amplitude of sin2 �31 term in Eq. (7.47) is larger than that of sin2 �32. Therefore,
the power of the Δm2

31 peak in the Fourier analysis is larger than that of the Δm2
32 peak.

This means the larger peak corresponds to |Δm2
31| and the smaller peak corresponds

to |Δm2
32|. As shown in Fig. 7.5, if the power of the higher frequency peak is larger

m31
2

m32
2

m31
2

m32
2

Power

: Normal Hierarchy

: Inverted Hierarchy

Fig. 7.5 Expected power spectrum of the Fourier analysis of the energy spectrum for reactor
neutrinos at a baseline 50 km. The horizontal axis ω corresponds to the oscillation frequency and
the vertical axis is the power of the Fourier analysis. The larger peak is the |Δm2

31| peak and the
smaller peak is the |Δm2

32| peak. If the |Δm2
31| peak locates higher ω than the |Δm2

32| peak, it is
normal Hierarchy and vice versa

http://dx.doi.org/10.1007/978-4-431-55462-2_4


7.1 Measurement of Remaining Oscillation Parameters 143

than that of the lower frequency peak, it means |Δm2
31| > |Δm2

32|, which corresponds
to the normal hierarchy, and if the power of the higher frequency peak is smaller than
that of the lower frequency peak, it means |Δm2

31| < |Δm2
32|, which corresponds to

the inverted hierarchy. In this measurement, there is a merit that it is not necessary to
know the absolute location of the peaks and the measurement is relatively insensitive
to the energy scale error. Although the separation of the peaks of 3 % is larger than
the Δm̂2 separation of ∼1 %, a very good energy resolution is still necessary for
the neutrino detector. Currently JUNO [6] is proposed in China and RENO50 [7] is
proposed in Korea.

7.2 Sterile Neutrino Anomalies

There have been a number of anomalies and spurious results in the history of the
neutrino experiments. Some of them have disappeared but a few of them have led
great discoveries. The continuous energy spectrum of the β rays led the idea of
neutrinos. Anomaly of deficits of solar and atmospheric neutrinos resulted in the
discoveries of the neutrino oscillations. Therefore, anomalies may be clues to new
physics and we have to be sincere about experimental facts.

Currently some neutrino oscillation experiments indicate anomalies which could
be explained if fourth neutrino that is called sterile neutrino would exist and the
standard neutrinos would oscillate to them.

7.2.1 The LSND, KARMEN, MiniBooNE
and ICARUS Experiments

In mid 1990s, LSND (Liquid Scintillator Neutrino Detector) group searched for
νμ → νe oscillation [8]. νμ is produced in the decay chain from π+ as shown in
Eq. (7.49). The pions are produced by a 800 MeV LAMPF high intensity proton
accelerator. Since the energy of the pions are not so high, π+ and μ+ stop in the
target materials.

π+(stop) →μ+ + νμ

� μ+(stop) → e+ + νμ + νe

(7.49)

In this beam energy, the π− production rate is much smaller than the π+ one.
In addition, π− and its decay product μ− are absorbed in the beam stop materials
before they decay. Therefore, the background νe flux from π− decay chain is highly
suppressed. Figure 7.6 shows the LSND beam line and the neutrino detector. The
detector was located at 30 m downstream of the beam stop. The neutrino target is
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Fig. 7.6 A schematic view of the LSND experiment [9]

low-light yield liquid scintillator of 176 tons, which can detects both the scintillation
and Čerenkov lights. The scintillator was contained in a stainless steel cylindrical
tank whose inner wall is covered by 1220 photomultipliers with the cathode diameter
8 inch. νe is detected using the inverse β decay reaction with a proton and identified
by a delayed coincidence signal;

νe + p → e+(<53 MeV)+ n

� n + p → d + γ(2.2 MeV).

(7.50)

Figure 7.7 shows the energy and L/E distributions of νe events for the LSND
experiment. They observed an excess of 87.9 ± 22.4 ± 6.0 νe events over the
backgrounds, for which the allowed oscillation parameters are sin2 2θ > 10−3 and

Fig. 7.7 LSND data. a Energy distribution of νe candidate events. The shaded region shows
expected distribution from a combination of neutrino backgrounds and neutrino oscillations at low
Δm2. b Lν/Eν distribution, where Lν is the baseline, and Eν is the neutrino energy. The data agree
well with an expectation based on neutrino oscillation. From Ref. [9]



7.2 Sterile Neutrino Anomalies 145

Δm2 > 3 × 10−2 eV2. The LSND group also reported positive νμ → νe oscillation
[10] at the similar oscillation parameters.

However, if we admit Δm2
21 ∼ 7.5×10−5 eV2 and Δm2

31 ∼ 2.5×10−3 eV2 which
have been confirmed by various experiments, there is no combinations of the neutrino
masses which gives the LSND result. Therefore, the LSND observation contradicts
the standard three flavor neutrino scheme. This is called the LSND anomaly.

To investigate the LSND anomaly, the KARMEN experiment searched for
νμ → νe oscillation using the ISIS rapid-cycling proton synchrotron whose energy
is 800 MeV [11]. The baseline was shorter (17.7 m) than LSND. KARMEN did not
observe the excess of νe and set the upper limit of sin2 2θ and Δm2.

MiniBooNE experiment at FNAL searched for both νμ → νe and νμ → νe

appearance oscillations using higher energy neutrinos which were produced from the
pion decay in flight using the 8 GeV proton beam at the FNAL Booster [12]. They
observed excesses of both the νe and νe signals. The relation between the typical
neutrino energies and the baselines of these experiments are shown in Fig. 5.1.

ICARUS is a liquid argon TPC based neutrino detector locates at the Gran Sasso
lab. in Italy [13]. They looked for νμ → νe signals using CNGS neutrinos from
CERN whose average energy is 20 GeV and baseline of 730 km. As of year 2013,
ICARUS has not observed positive νe appearance signal and set the upper limit of
sin2 2θ < 1 × 10−2 at Δm2 > 10−2 eV2.

Figure 7.8a shows the oscillation parameter regions of the positive results from
LSND, MiniBooNE and the negative results from KARMEN, ICARUS. There are
allowed regions at Δm2 > 0.2 eV2 and sin2 2θ < 0.01.

(a) (b)

Fig. 7.8 a Combined regions of the positive LSND, MiniBooNE results and the negative KAR-
MEN, ICARUS results [13] for νμ → νe and νμ → νe signals. b Allowed regions from the
combination of short baseline reactor neutrino experiments, the GALLEX and SAGE calibration
source experiments for νe → νe and νe → νe deficits [14]

http://dx.doi.org/10.1007/978-4-431-55462-2_5
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7.2.2 Gallium and Reactor Neutrino Anomalies

The GALLEX and SAGE groups calibrated their solar neutrino detector using intense
νe’s from the strong 51Cr and 37Ar sources.

Those sources emit monochromatic νe’s from the electron capture reactions of

e− + 51Cr → 51V + νe,

e− + 37Ar → 37Cl + νe. (7.51)

The νe energies of the main branching are 0.82 and 0.90 MeV for 51Cr and 37Ar,
respectively. These sources were put in their Ga detectors and the reaction rate of

νe + 71Ga → 71Ge + e−, (7.52)

was measured and it was found that the event rates are smaller than expectations.
An average of the ratio between the observed and the expected rates is

R = 0.86 ± 0.05, (7.53)

which indicates that the significance of the deficit of the neutrino is 2.8 σ. A possible
explanation of the deficit is that neutrino oscillation with very short oscillation length
changed νe to other neutrino flavor in the detector.

Another anomaly has been pointed out for the reactor neutrinos. Recent re-
evaluation of the reactor νe flux [15–17] shows that observed neutrino fluxes by
various short-baseline reactor neutrino experiments are ∼6 % smaller than the new
prediction. This is called the “Reactor Neutrino Anomaly”. Again this anomaly can
be explained by assuming the existence of neutrino oscillation at very short baselines.
Figure 7.8b shows the allowed parameter region of the possible oscillation based on
the Gallium, and reactor neutrino anomalies.

7.2.3 Sterile Neutrino

Anomalies observed by the LSND, MiniBooNE, the νe sources and the reactor neu-
trino experiments can be explained if four or more neutrinos exist and they oscillate
with the standard neutrinos with oscillation parameters of sin2 2θ = 0.001 ∼ 0.1
and Δm2 > 0.1 eV2. However, the fourth neutrino is ruled out from the neutrino
counting experiments using the probability of e+e− → Z0 → νν reactions. If the
fourth neutrino exists, it must not couple to weak bosons. Since the fourth neutrino
does not couple to strong nor electroweak interactions, we can not observe the fourth
neutrino directly. Therefore, the fourth neutrino is called the sterile neutrino which
we label as νs .



7.2 Sterile Neutrino Anomalies 147

The oscillation formula can be extended to include the sterile neutrinos by expand-
ing the flavor index α to (νe, νμ, ντ, νs, . . .) and the mass index j to (1, 2, 3, 4, . . .),
in the equation of the neutrino mixing (4.85). The expanded mixing matrix would
be expressed by

⎛
⎜⎜⎜⎜⎜⎝

|νe〉
|νμ〉
|ντ〉
|νs〉
...

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

U∗
e1 U∗

e2 U∗
e3 U∗

e4 · · ·
U∗

μ1 U∗
μ2 U∗

μ3 U∗
μ4 · · ·

U∗
τ1 U∗

τ2 U∗
τ3 U∗

τ4 · · ·
U∗

s1 U∗
s2 U∗

s3 U∗
s4 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

|ν1〉
|ν2〉
|ν3〉
|ν4〉
...

⎞
⎟⎟⎟⎟⎟⎠

. (7.54)

Assuming a simple case that there is only one sterile neutrino with mass m4 ∼ 1 eV2

and |Us4|2 
 |Uα4|2, the oscillation probabilities at (E/L ∼ 1 eV2) are calculated
to be

Pνe→νs ∼ 4|Us4|2|Ue4|2 sin2

(
m2

4L

4Eν

)
and

Pνμ→νe ∼ 4|Ue4|2|Uμ4|2 sin2

(
m2

4L

4Eν

)
.

(7.55)

Therefore, if |Us4|2 ∼ 0.5, |Ue4|2 ∼ 0.1 and |Uμ4|2 ∼ 0.01, all the experimental
results shown in Fig. 7.8 could be consistently explained. There are a number of
experimental projects which search for the sterile neutrinos.

In Chap. 2, we classified the fermions based on the interactions they make and
pointed out the classification has the nesting structure as shown in Fig. 2.1. Since the
sterile neutrino, if it exists, does not couple with any known interactions, it is outside
of the Matryoshka doll as shown in Fig. 7.9 and the anomalies suggest some kind of
transitions, which connect the sterile neutrino to standard neutrinos, exists.

Fig. 7.9 Sterile neutrino
(νS) might locate outside of
the standard model
Matryoshka doll (See also
Fig. 2.1). There might be a
transition between the
standard neutrinos

u, d, s, 
c, b, t

Strong

EM

e−, μ−, −

Weak 

e, μ, 

S (?)
Transition

http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_2
http://dx.doi.org/10.1007/978-4-431-55462-2_2
http://dx.doi.org/10.1007/978-4-431-55462-2_2
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7.3 Absolute Neutrino Masses

The absolute neutrino masses and the neutrino oscillation parameters are comple-
mentary to determine the transition amplitudes. All the neutrino mixing angles have
been measured and the measurement of the absolute neutrino mass has become all the
more important. Generally, experiments measure a weighted average of the squared
masses of the mass eigenstates. The mixing matrix elements measured by the neutrino
oscillation experiments give the “weight” and the Δm2’s give the relative difference
between the masses. The measured neutrino oscillation parameters put limitations
to the possible neutrino mass ranges and therefore, give strong motivations to the
absolute neutrino mass experiments.

7.3.1 Effective Mass of νe

Experimentally, most strict upper limit of neutrino mass is obtained from the mea-
surement of the tritium β decay,

3H → 3He + e− + νe. (7.56)

The small Q-value of the decay (18 keV) is suitable to search for small neutrino
masses. Since the tritium atom has simple structure and is usable as gaseous source,
the corrections of atomic effects for the energy spectrum of the β ray are very small.
Therefore, the tritium is one of the best β sources to search for the νe mass.

The energy spectrum of the e− in this decay in the case neutrinos have mass mν is,

N (pe)dpe∝p2
e (E0 − Ee)

2
√

1 − mν2

(E0 − Ee)2 dpe. (7.57)

Therefore, the neutrino mass can be measured from the shift and the distortion of the
end point of the e− energy spectrum. The neutrino mass is measured as mν2 instead
of mν in the experiments. Mainz [18] and Troitsk [19] experiments have measured

the upper limit
√

m2
νe < 2 eV. KATRIN [20] experiment whose expected sensitivity

is 0.2 eV is under construction now.
The νe state is a superposition of the mass eigenstates νi as given in Eq. (8.19),

|νe〉 = Ue1 |ν1〉 + Ue2 |ν2〉 + Ue3 |ν3〉 , (7.58)

where Uei are the elements of the mixing matrix for neutrinos. If the energy resolution
of the β-decay experiment were good enough, we would see three peaks at m2

i
with heights |Uei |2 in the mass-squared spectrum as shown in Fig. 7.10. However,
the actual resolution of the mass measurement is much worse than the separations
between the m2

i peaks and we will observe a broad peak in the histogram whose

http://dx.doi.org/10.1007/978-4-431-55462-2_8
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Fig. 7.10 Histogram for m2

distribution for m2
νe

measurement. Expected
number of events is
proportional to |Uei |2. The
dashed line indicates the
resolution of the experiment.
The center value of the peak
is the weighted average of
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center value is the weighted average of the m2
i as indicated by the dashed line in

Fig. 7.10. The experiments recognize the weighted average as the electron neutrino
mass squared m2

νe
,2

〈m2
νe

〉 = |Ue1|2m2
1 + |Ue2|2m2

2 + |Ue3|2m2
3

= c2
13(c

2
12m2

1 + s2
12m2

2) + s2
13m2

3.
(7.59)

Two out of the three mass squared in Eq. (7.59) can be replaced by the observed Δm2
21

and |Δm2
31|. The lightest neutrino mass is m1 for NH and m3 for IH. Therefore, the

effective νe mass can be expressed using the lightest neutrino mass as follow,

〈m2
νe

〉 =
{

m2
1 + s2

13|Δm2
31| + c2

13s2
12Δm2

21 ∼ m2
1 + (10 meV)2 for NH

m2
3 + c2

13|Δm2
31| + c2

13s2
12Δm2

21 ∼ m2
3 + (50 meV)2 for IH.

(7.60)

Figure 7.11 shows the relation between
√

〈m2
νe 〉 and the lightest neutrino mass. For

IH, the νe mass will be definitely observed above 50 meV.
Once 〈m2

νe
〉 is measured and the mass hierarchy is determined, all the neutrino

masses can be determined from the relation (6.68).

2 We assume CPT symmetry and mν = mν throughout the text.

http://dx.doi.org/10.1007/978-4-431-55462-2_6
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7.3.2 Effective Masses of νμ and ντ

From the same discussions for the νe mass, which derived Eq. (7.59), the 〈m2
νμ

〉 and

〈m2
ντ

〉 can be expressed by,

〈m2
να

〉 = |Uα1|2m2
1 + |Uα2|2m2

2 + |Uα3|2m2
3, (7.61)

where α stands for μ or τ. Using Eq. (7.59), the 〈m2
νμ

〉 and 〈m2
ντ

〉 can be expressed

by the 〈m2
νe

〉 as follows:

〈m2
νμ/τ

〉 = 〈m2
νe

〉 + Δm2
21(|Uμ/τ2|2 − |Ue2|2) + η31

M |Δm2
31|(|Uμ/τ3|2 − |Ue3|2)

∼ 〈m2
νe

〉 + η31
M |Uμ/τ3|2|Δm2

31|. (7.62)

Therefore, 〈m2
νμ

〉 and 〈m2
ντ

〉 can be determined from 〈m2
νe

〉 measurement as
given by

{
〈m2

νμ
〉 ∼ 〈m2

νe
〉 + η31

M (30 meV)2

〈m2
ντ

〉 ∼ 〈m2
νe

〉 + η31
M (36 meV)2.

(7.63)

Since the νe mass has been measured to be smaller than 2 eV, the νμ and ντ masses
are also 2 eV or less. On the other hand, the current experimental upper limits of νμ/τ
masses are mνμ < 0.19 MeV, from the pion decay and mντ < 18 MeV, from the τ
decay. It seems to be practically impossible to measure νμ and ντ masses directly
using currently available technologies.

7.3.3 Double Beta Decay Mass mββ

In the standard model, the masses of the quarks and the charged leptons are generated
by the Yukawa coupling to the Higgs field. If neutrino mass is also generated the
same way as shown in Fig. 7.12a, the mass is called the Dirac mass.

The neutrino masses are much smaller than those of the charged fermions and it
is believed to be unnatural to consider that the neutrino masses are generated by the
same mechanism as the charged fermions. Another possibility to generate neutrino
mass is a transition between νL and νR as shown in Fig. 7.12b. The diagram 7.12a
requires unknown νR but the diagram 7.12b requires only known neutrino states, νL

and νR . In this case, a neutrino mass eigenstate is

Fig. 7.12 Possible schemes
to generate neutrino mass.
a Dirac neutrino mass.
b Majorana neutrino mass

-im

L R

-im

L R

(a) (b)
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|νM 〉 = 1√
2
(|νL〉 + |νR〉). (7.64)

This type of neutrino is called the Majorana neutrino and its mass is called the
Majorana mass. A peculiar property of this state is that the neutrino and antineutrino
state (CP state) are identical.

|νM 〉 = 1√
2
(|νR〉 + |νL〉) = |νM 〉 . (7.65)

The diagram 7.12b also shows that if a neutrino is generated as νR by β decay at
time t = 0, it turns into νL after infinitesimal time δt , like (3.21), as,

|νR〉 → |νR〉 − imν |νL〉 δt. (7.66)

In principle the absolute mass of the neutrino can be measured by making use of this
process as described in the next section.

7.3.3.1 Neutrinoless Double Beta Decays

Currently, the only practical way to test if the neutrino is Majorana type or not is to
observe neutrinoless double beta (0ν2β) decays,

Z A →Z+2 A + e− + e−. (7.67)

The Feynman diagram of the 0ν2β decay is shown in Fig. 7.13. If neutrino is a
massive Majorana particle, the following process can take place. (1) A neutron in
the nucleus initiates β-decay producing e− and νR. (2) νR changes to νL due to
the transition amplitude shown in Fig. 7.12b. (3) Another neutron emits virtual W −.
(4) The νL interacts with the virtual W − and turns to e−. As a result, two electrons
and no neutrino are emitted from the nucleus. Since there are no neutrinos in the final
state and the recoil energy of the nucleus is very small, the total energy of the two
electrons is monochromatic which makes it possible to distinguish the 0ν2β decay
signals from 2ν2β decay background.

Since there are 3 flavor neutrinos and the flavor changes by the neutrino oscillation,
the neutrino mixing for the three neutrino flavors has to be taken into account when
evaluating the 0ν2β decay rates.

⎛
⎝|νe〉

|νμ〉
|ντ〉

⎞
⎠ =

⎛
⎝Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3
Uτ1 Uτ2 Uτ3

⎞
⎠

⎛
⎝|ν1〉

|ν2〉
|ν3〉

⎞
⎠ . (7.68)

http://dx.doi.org/10.1007/978-4-431-55462-2_3
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Fig. 7.13 The Feynman
diagram of 0ν2β decay. The
numbers in parentheses
correspond to the processes
described in the text

udd dud

udu

W− W−

uud

e− e−

L

m

n n

pp

dd dd

gW
gW

gW

gW

(1)

(2)

(3)

(4)
 R

The wave function of the neutrinos produced at t = 0 in the β decay of the
process (1) is

|ψν(0)〉 = |νeR〉 = Ue1 |ν1R〉 + Ue2 |ν2R〉 + Ue3 |ν3R〉 . (7.69)

The neutrino changes its helicity and particle-antiparticle properties due to the
diagram of Fig. 7.13b. Equation (7.66) shows that each mass eigenstate in (7.69)
changes to

|νi R〉 → |νi R〉 − imi |νi L〉 δt, (7.70)

and the neutrino wave function becomes

|ψ(δt)〉 = |νeR〉 − i (m1Ue1 |ν1L〉 + m2Ue2 |ν2L〉 + m3Ue3 |ν3L〉) δt, (7.71)

after infinitesimal time δt . |νeL〉 state interacts with W boson in the process (4). Since

|νeL〉 = U∗
e1 |ν1L〉 + U∗

e2 |ν2L〉 + U∗
e3 |ν3L〉 , (7.72)

the |νeL〉 component of the wave function (7.71) is

〈νeL |ψ(δt)〉 = −i
(

m1U 2
e1 + m2U 2

e2 + m3U 2
e3

)
δt. (7.73)

When the decay probability is calculated, δt is integrated with a weight of the nuclear
matrix element and the decay width is obtained as

� = 1

τ
= G|MA|2|〈mββ〉|2, (7.74)
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where G corresponds to effective coupling constant which is proportional to G4
F ,

and MA is the matrix element of the nuclear transition. 〈mββ〉 is called the “effective
Majorana mass”,

〈mββ〉 ≡ |m1U 2
e1 + m2U 2

e2 + m3U 2
e3|. (7.75)

The mixing matrix elements in the probability (7.74) have the form of U 2
eiU

2
ej . This is

different from the neutrino oscillation probability, |Uei |2|Uej |2 and the discussions in
Sect. 4.2.3 on the possible free parameters of the mixing matrix does not apply here.
In this case, the minimum number of the imaginary phase in Uαi is not restricted to
just one.

If the standard parametrization of the mixing matrix with the additional phases is
used, the effective Majorana mass is expressed as

〈mββ〉 =
∣∣∣c2

13(c
2
12m1 + s2

12m2eiα) + s2
13m3eiβ

∣∣∣ . (7.76)

As we discussed for the νe mass measurement in Sect. 7.3.1, we can express the
effective Majorana mass with the lightest neutrino masses using observed neutrino
oscillation parameters. For normal mass hierarchy (NH), the lightest neutrino mass
is m1 and

m2 =
√

m2
1 + Δm2

21, m3 =
√

m2
1 + |Δm2

31|. (7.77)

For inverted mass hierarchy (IH), the lightest neutrino mass is m3 and

m1 =
√

m2
3 + |Δm2

31|, m2 =
√

m2
3 + |Δm2

31| + Δm2
21. (7.78)

By putting these parameters, together with the mixing matrix elements into Eq. (7.76),
〈mββ〉 is calculated as shown in Fig. 7.14. For IH, 〈mββ〉 is greater than ∼15 meV.

Fig. 7.14 The effective
Majorana mass as a function
of the lightest neutrino mass.
From Ref. [21]
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This means if the mass hierarchy is determined to be IH by other experiments, dou-
ble beta decay experiments which has sensitivity of 15 meV or better can definitely
determine whether the neutrino is Majorana or Dirac. For instance, if 0ν2β events
are observed, the neutrino is Majorana, however if 0ν2β events can not be observed
at 〈mββ〉 > 15 meV, it is Dirac particle. For NH, the effective Majorana mass does
not have minimum value. The effective Majorana mass can be zero for a specific
combination of the parameters. There have been a number of experiments to mea-
sure 0ν2β decays but there have been no firm evidence of positive signals so far
[1, Chap. 1].
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Chapter 8
Appendix

8.1 Notations Used in This Book

The definition of some parameters and notations used in this text may be different
from the ones used in other books. In this appendix, the definition of the parameters
used in this text is summarized.

8.1.1 A Summary of Symbols and Abbreviations

i, j : Index of mass, α, β: Index of flavor.
l: Leptons. Sometimes specifically shows charged leptons.
q: Quarks. Momentum transfer.
f : Fermions. Sometimes specifically shows mass eigenstate.
f ′: Flavor eigenstate fermion.
xW = sin2 θW : Weak mixing angle.
Uν: MNSP mixing matrix.
θi j : Mixing angle.
si j = sin θi j , ci j = cos θi j , ti j = tan θi j sδ = sin δ, cδ = cos δ, Δm2

i j = m2
i −m2

j .

�i j = Δm2
i j L/4Eν: Oscillation phase.

@�i j = “at �i j ∼ π/2”.

ηi j
M = +1 for normal mass hierarchy of masses mi, m j and −1 for inverted mass

hierarchy.
ηC = +1 for neutrino and −1 for antineutrino.

η = p
E+m = βγ

1+γ .

Jr = s12c12s23c23s13c213 sin δ: Jarlskog invariant.
J123 = sin 2θ12 sin 2θ23 sin 2θ13.
εm = Δm2

21/Δm2
31.

υ = 2
√
2EGFne/Δm2: weak potential parameter.

© Springer Japan 2015
F. Suekane, Neutrino Oscillations, Lecture Notes in Physics 898,
DOI 10.1007/978-4-431-55462-2_8
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�
αβ
i j = UαiU

∗
α jUβ j

U∗
βi
.

P∗
X = PX (δ → −δ).

� : Sun, ⊕ : Earth.

8.1.2 Parameter Values

c = 2.997 924 58 × 108 ms−1.

� = 6.582 119 3 × 10−22 MeVs.
�c = 197.327MeVfm.

α = e2
4π = 1

137.035 999 0 .

MZ = 91.188GeV/c2, MW = 80.39GeV/c2.
xW = sin2 θW = 0.2312.
GF = 1.166 378 × 10−5 GeV−2.

8.1.3 Pauli Matrices and Identity Matrix

σiσ j = iσk; (i, j, k) are cyclic. (8.1)

σiσ j + σ j σi = 2δi j . (8.2)

σ†
i = σi. (8.3)

I =
(
1 0
0 1

)
, σx = σ1 =

(
0 1
1 0

)
, σy = σ2 =

(
0 −i
i 0

)
, σz = σ3 =

(
1 0
0 −1

)
.

(8.4)

σ+ = σx + iσy = 2

(
0 1
0 0

)
, σ− = σx − iσy = 2

(
0 0
1 0

)
. (8.5)

8.1.4 Dirac Matrices

γ μγν + γνγ μ = 2gμν, gμν =

⎛
⎜⎜⎝

1 0 0 0
0 − 1 0 0
0 0 − 1 0
0 0 0 − 1

⎞
⎟⎟⎠ . (8.6)
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γμ† = γ0γ μγ0. (8.7)

γ0 =
(

I 0
0 −I

)
, γ1 =

(
0 σx

−σx 0

)
, γ2 =

(
0 σy

−σy 0

)
, γ3 =

(
0 σz

−σz 0

)
. (8.8)

γ5 = iγ0γ1γ2γ3 =
(
0 I
I 0

)
. (8.9)

γR = 1 + γ5

2
= 1

2

(
I I
I I

)
, γL = 1 − γ5

2
= 1

2

(
I −I

−I I

)
. (8.10)

ψL = γLψ, ψR = γRψ. (8.11)

8.1.5 Spin

ŝ(θ, φ) =
(

e−i(φ/2) cos(θ/2)
ei(φ/2) sin(θ/2)

)
. (8.12)

χ1 =
(
1
0

)
, χ2 =

(
0
1

)
. (8.13)

ψP = 1 + p̂σ
2

ψ : spin is parallel to the momentum.

ψA = 1 − p̂σ
2

ψ : spin is antiparallel to the momentum. (8.14)

8.1.6 Fierz Transformation

From Fierz identity [1];

[χγ μψ][ψγμχ] = [χχ][ψψ] − 1

2
[χγ μχ][ψγμψ]

− 1

2
[χγ μγ5χ][ψγμγ5ψ] − [χγ5χ][ψγ5ψ],

(8.15)

and

[χγ μγ5ψ][ψγμγ5χ] = − [χχ][ψψ] − 1

2
[χγ μχ][ψγμψ]

− 1

2
[χγ μγ5χ][ψγμγ5ψ] + [χγ5χ][ψγ5ψ].

(8.16)
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Then

[χγ μψ][ψγμχ] + [χγ μγ5ψ][ψγμγ5χ] = − [χγ μχ][ψγμψ] − [χγ μγ5χ][ψγμγ5ψ].
(8.17)

8.1.7 Neutrino Oscillation Related Formula

8.1.7.1 Mixing Matrices for Neutrinos and Antineutrinos

ψν(t) = Cνe(t) |νe〉 + Cνμ(t) |νμ〉 + Cντ(t) |ντ〉
= D1e−im1t |ν1〉 + D2e−im2t |ν2〉 + D3e−im3t |ν3〉 .

ψν(t) = Cνe(t) |νe〉 + Cνμ(t) |νμ〉 + Cντ(t) |ντ〉
= D1eim1t |ν1〉 + D2eim2t |ν2〉 + D3eim3t |ν3〉 .

(8.18)

⎛
⎝Cνe

Cνμ

Cντ

⎞
⎠ =

⎛
⎝Ue1, Ue2, Ue3

Uμ1, Uμ2, Uμ3
Uτ1, Uτ2, Uτ3

⎞
⎠

⎛
⎝C1

C2
C3

⎞
⎠ ,

⎛
⎝|νe〉

|νμ〉
|ντ〉

⎞
⎠ =

⎛
⎝U∗

e1, U∗
e2, U∗

e3
U∗

μ1, U∗
μ2, U∗

μ3
U∗

τ1, U∗
τ2, U∗

τ3

⎞
⎠

⎛
⎝|ν1〉

|ν2〉
|ν3〉

⎞
⎠ ,

⎛
⎝Cνe

Cνμ

Cντ

⎞
⎠ =

⎛
⎝U∗

e1, U∗
e2, U∗

e3
U∗

μ1, U∗
μ2, U∗

μ3
U∗

τ1, U∗
τ2, U∗

τ3

⎞
⎠

⎛
⎝C1

C2
C3

⎞
⎠ ,

⎛
⎝|νe〉

|νμ〉
|ντ〉

⎞
⎠ =

⎛
⎝Ue1, Ue2, Ue3

Uμ1, Uμ2, Uμ3
Uτ1, Uτ2, Uτ3

⎞
⎠

⎛
⎝|ν1〉

|ν2〉
|ν3〉

⎞
⎠ .

(8.19)

8.1.7.2 Parametrization of the Mixing Matrix

Uν =
⎛
⎝1 0 0
0 c23 s23
0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠

=
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13

⎞
⎠ .

(8.20)

8.2 A Working Lagrangian with Neutrino Flavor Transition

In the standard model, neutrino is assumed to be massless and there is no νR state.
However, neutrino oscillation revealed that the neutrinos actually have finite masses
and mixings. In this appendix, the standard model Lagrangian is slightly expanded
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to implement the neutrino mass and mixing. Although the origin of the neutrino
oscillation is not understood yet, we assume that there are neutrino flavor transitions
just like the quarks here. The standard model Lagrangian can be obtained by setting
the neutrino mixing matrix as the identical matrix.

8.2.1 Electroweak Part of the Working Lagrangian

We express the electroweak part of the working Lagrangian with neutrino mixing as,

LEW =
∑

f

(i[ f γ μ∂μ f ] − m f [ f f ] + eQ f [ f γ μ f ]Aμ

− gW ([ f ′
ULγ μ f ′

DL]W −
μ + H.C.) − gZ(C f

L [ fLγ μ fL] + C f
R [ fRγ μ fR])Zμ)

− 1

2
M2

W W −
μ W +μ − 1

2
M2

Z ZμZμ + LGK. (8.21)

where LGK is the kinetic term of the gauge bosons.1 The symbol f represents the
mass eigenstate fermions and f ′ represents flavor eigenstate,

f = u, c, t, d, s, b, e, μ, τ, ν1, ν2, ν3;
f ′ = u, c, t, d′, s′, b′, e, μ, τ, νe, νμ, ντ.

(8.22)

For, u, c, t, e,μ, τ, the flavor eigenstate andmass eigenstate are defined to be identical.
f ′
U represents the up-type weak eigenstate fermions and f ′

D represents the down-type
weak eigenstate fermions,

f ′
U = u, c, t, νe, νμ, ντ, f ′

D = d′, s′, b′, e, μ, τ. (8.23)

fL and fR represent left-handed and right-handed fermions, respectively.

fL = γL f, fR = γR f. (8.24)

The weak eigenstates and mass eigenstate are connected by the Cabbibo-Kobayashi-
Maskawa (CKM) matrix, VCKM for quarks and Maki-Nakagawa-Sakata-Pontecorvo
(MNSP) matrix, Uν for neutrinos.

⎛
⎝d′

s′
b′

⎞
⎠ =

⎛
⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠

⎛
⎝d

s
b

⎞
⎠ ,

⎛
⎝νe

νμ
ντ

⎞
⎠ =

⎛
⎝Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3
Uτ1 Uτ2 Uτ3

⎞
⎠

⎛
⎝ν1

ν2
ν3

⎞
⎠ . (8.25)

1 See [2] for explicit formula.
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The coupling coefficients of the fermion-Z0 are

(C f
L , C f

R ) =
{

(1 − 2Q f sin2 θW , − 2Q f sin2 θW ) for fU ,

(−1 − 2Q f sin2 θW , − 2Q f sin2 θW ) for fD,
(8.26)

where sin2 θW is the weak mixing angle (∼0.23).
There are the relations,2

e = √
2gW sin θW = gZ sin 2θW , MW = MZ cos θW . (8.27)

8.2.2 Dirac Equation of Neutrinos with Cross Transitions

The unitarity of themixingmatrices (8.25) indicates that there are following relations,

dd + ss + bb = d′d′ + s′s′ + b′b′,
ν1ν1 + ν2ν2 + ν3ν3 = νeνe + νμνμ + ντντ.

(8.28)

The corresponding terms in the Lagrangian (8.21), such as
∑

f f γ μ∂μ f and
∑

f Q f

[ f γ μ f ],3 can be expressed the same way by using either the weak eigenstate and
mass eigenstate. However, since the fermionmasses are different for different flavors,
the fermion mass term,

∑
f m f [ f f ] is not identical to ∑

f m f [ f ′ f ′]. If the mass
term is expressed by the weak eigenstate, the neutrino term can be written as

mi[νiνi] =
∑
αβ

(miUβiU
∗
αi)[νβνα]. (8.29)

The Lagrangian for the free neutrino is,

Lν0 =
∑

α
i[ναγ μ∂μνα] −

∑
αβ

μβα[νβνα], (8.30)

where μβα = ∑
i miUβiU

∗
αi. The Euler-Lagrange equation, in terms of να leads

0 = ∂μ

(
∂Lν0

∂(∂μνα)

)
− ∂Lν0

∂να
= i∂μ(να)γ μ +

∑
β

μβανβ. (8.31)

2 The relation to the standard expression of the weak coupling is gW = g/
√
2, gZ = g/2 cos θW ,

where g is the SU(2) gauge coupling constant.
3 Q f is the same for d, s, b.
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By taking the complex conjugate, we obtain

iγ μ∂μνα −
∑

β

μαβνβ = 0, (8.32)

where the relation μ∗
βα = μαβ is used. This is the Dirac equation of neutrinos with

the same type of flavor transition amplitudes as quarks.

8.3 General Solution for Two Flavor State Equation

The state equation to solve is,

i
d

dt

(
α(t)
β(t)

)
=

(−μ τ∗
τ μ

)(
α(t)
β(t)

)
, (8.33)

where there is a normalization relation,

|α|2 + |β|2 = 1. (8.34)

Equation (8.33) can be rewritten as

i
d

dt

(
α
β

)
= ω

(− cos 2θ e−iφ sin 2θ
eiφ sin 2θ cos 2θ

)(
α
β

)
≡ ωT̂

(
α
β

)
, (8.35)

where

τ = |τ|eiφ, ω =
√

μ2 + |τ|2 and tan 2θ = |τ|
μ

. (8.36)

T̂ is the normalized transition matrix. In order to obtain the eigenvalues and
eigenvectors, we require that

i
d

dt

(
α
β

)
= ωT̂

(
α
β

)
= λ

(
α
β

)
, (8.37)

where λ corresponds to the eigen value to be determined from this relation. The
second relation in Eq. (8.37) is

(−ω cos 2θ − λ ωe−iφ sin 2θ
ωeiφ sin 2θ ω cos 2θ − λ

)(
α
β

)
= 0. (8.38)

Since the matrix in Eq. (8.38) can not have the inverse for non-0 α and β solution,
the eigenvalues are,

λ± = ±ω. (8.39)
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The relation between α and β for each case is,

e−iφ sin 2θβ±,= (cos 2θ ± 1)α±. (8.40)

Together with the normalization condition (8.34), the eigenvectors are

(
α−
β−

)
=

(
cos θ

−eiφ sin θ

)
,

(
α+
β+

)
=

(
sin θ

eiφ cos θ

)
. (8.41)

Therefore, the unitary matrix

U =
(

cos θ sin θ
−eiφ sin θ eiφ cos θ

)
(8.42)

diagonalizes T̂ ,

U †T̂ U =
(−1 0

0 1

)
. (8.43)

The state equation (8.35) becomes,

d

dt

(
α′
β′

)
= −iω

(−1 0
0 1

)(
α′
β′

)
, (8.44)

where (
α′
β′

)
= U †

(
α
β

)
. (8.45)

The solution of Eq. (8.44) is

(
α′(t)
β′

(t)

)
=

(
eiωt 0
0 e−iωt

)(
α′(0)
β′

(0)

)
. (8.46)

Therefore, the general solution of (8.35) is,

(
α(t)
β(t)

)
= U

(
eiωt 0
0 e−iωt

)
U †

(
α(0)
β(0)

)

=
(

sin2 θe−iωt + cos2 θeiωt e−iφ sin θ cos θ(eiωt − e−iωt)

eiφ sin θ cos θ(eiωt − e−iωt) sin2 θeiωt + cos2 θe−iωt

)(
α(0)
β(0)

)
.

(8.47)
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8.4 Dirac Equation and Wave Packet

8.4.1 Dirac Equation

The Dirac equation is, [
iγμ∂μ − m

]
ψ(x) = 0, (8.48)

where the γμ is four component matrices which satisfy the following condition,

γμγν + γνγμ = 2gμν. (8.49)

We use the γ matrices of the following notation;

γ0 =
(

I 0
0 −I

)
, γ =

(
0 σ

−σ 0

)
. (8.50)

The identity and Pauli matrices are,

I =
(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (8.51)

By using the matrix forms (8.50), the Dirac equation can be expressed by a matrix
form as follows: (

i∂t − m i(σ · ∂)

−i(σ · ∂) −i∂t − m

)
ψ(x) = 0. (8.52)

8.4.2 Plane Wave Solution

Plane wave is a wave which extends infinitely in the space and time at a fixed energy
and momentum;

ψ(x) = we−ikx , (8.53)

where x = (t, x) and k = (ω, k) and w is a four component spinor,

w =
(

u
v

)
, (8.54)

where, u and v are two component spinors. By putting the plane wave (8.53) in the
Dirac equation (8.52), we obtain

(
ω − m −k · σ
k · σ −ω − m

)(
u
v

)
e−ikx = 0. (8.55)
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In the case that the fermion is at rest (k = 0), the equations reduce to

{
(ω − m)u = 0

(ω + m)v = 0.
(8.56)

There are three sets of solutions, (ω = any, u = 0, v = 0), (ω = m, u = any, v = 0)
and (ω = −m, u = 0, v = any). The first solution means that the fermion does not
exist in the system. The second and third solutions correspond to the positive energy
and negative energy solutions, respectively. The general wave function of a fermion
at rest is a sum of the these solutions.

ψ(x) =
(

u
0

)
e−imt +

(
0
v

)
eimt . (8.57)

For a finite momentum (k �= 0), the Dirac equation (8.55) becomes the following
simultaneous equations,

{
(ω − m)u − k · σv = 0

k · σu − (ω + m)v = 0.
(8.58)

Ifω = m or−m, we obtain the non-existing solution, u = 0 and v = 0. Forω �= ±m,
there are the relations,

v = k · σ
ω + m

u, u = k · σ
ω − m

v. (8.59)

By substituting v in the second relation in (8.59) by the first relation, we obtain a
requirement,

(ω2 − m2 − k2)u = 0. (8.60)

For non-0 u,
ω2 − m2 − k2 = 0. (8.61)

This can be satisfied for

k = ±p and ω = ±
√

(±p)2 + m2 ≡ ±E. (8.62)

We choose (ω, k) = (E, p) and (−E,−p) because they can be obtained using the
proper Lorentz transformation of (ω, k) = (±m, 0) and the wave functions of the
positive and negative energy states are, using (8.59),4

4 It is possible to derive the same formula by Lorentz boost of the wave function at rest. See for
example [3].
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ψ+(x) =
(

u
k·σ

ω+m u

)
e−i(ωt−kx) =

(
u

p·σ
E+m u

)
e−i(Et−px),

ψ−(x) =
( k·σ

ω−m v
v

)
e−i(ωt−kx) =

( p·σ
E+m v

v

)
ei(Et−px).

(8.63)

Physically the negative energy statewhich propagates backward in time is recognized
as an antiparticle. On the other hand, the positive energy state which propagates
forward in time is recognized as regular particle. The general wave function is a sum
of them,

ψ(x) =
(

u
(η · σ)u

)
e−i px +

(
(η · σ)v

v

)
ei px , (8.64)

where we defined

p ≡ (E, p), η ≡ p
E + m

= γβ
γ + 1

. (8.65)

Usually we normalize the wave equation as follows,

|ψ±|2 = 2E. (8.66)

For example,

|ψ+|2 = 2E

E + m
|u|2 = 2E (8.67)

and
|u|2 = E + m. (8.68)

Therefore, we can rewrite
u = √

E + mû, (8.69)

where |û|2 = 1.
Using the normalization, the general wave function which satisfies the Dirac

equation (8.48) can be expressed as

ψ(x) = √
E + m

[(
û

(η · σ)û

)
e−i px +

(
(η · σ)v̂

v̂

)
ei px

]
, (8.70)

where in this case,

|û|2 + |v̂|2 = 1. (8.71)
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8.4.3 Wave Packet

The plane wave extends infinitely in the space and time. However, the actual particle
exits within a limited region in space. These state can be expressed by a superposition
of plane waves which have a narrow momentum spread. For one dimensional case,

Ψ(t, z) =
∫ +∞

−∞
a(p)ei(pz−E(p)t)d p, (8.72)

where a(p) represent a momentum distribution. We assume it is a Gaussian shape
with the mean and standard deviation of the momentum, p and σp, respectively,

a(p) = N exp

[
− (p − p)2

4σ2
p

]
. (8.73)

N = (2π)−3/4σ−1/2
p is the normalization coefficient. Note that the coefficient of the

σ2
p is “4” because the probability is square of wave function. By defining a parameter

q ≡ pz − p, the integration (8.72) becomes,

Ψ(t, z) = N
∫ +∞

−∞
exp

[
− q2

4σ2
p

]
exp

[
i

(
(q + p)z −

√
(q + p)2 + m2t

)]
dq.

(8.74)

Weassume thewidth of themomentumspread ismuch smaller than themeanmomen-
tum, σp 
 p. In this case, only |q| ∼ σp region contributes to the integration and
the following approximation is possible.

√
(q + p)2 + m2 ∼

√
p2 + m2 + 2pq ∼ E + p

E
q = E + βq, (8.75)

where E ≡
√

p2 + m2 and β ≡ p/E. Then,

Ψ(t, z) ∼ Nei(pz−Et)
∫ +∞

−∞
exp

[
− q2

4σ2
p

]
exp [iΔzq] dq, (8.76)

where Δz ≡ z − βt represents deviation from z = βt. Since q-odd component of the
integrand is cancelled off, the integration becomes

Ψ(t, z) = Nei(pz−Et)
∫ +∞

−∞
exp

[
− q2

4σ2
p

]
cos(Δzq)dq

= (2/π)1/4
√

σpe−σ2
p(Δz)2ei(pz−Et), (8.77)
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where the general integral relation,

∫ +∞

−∞
e−a2x2 cos bxdx =

√
π

a
exp

[
− b2

4a2

]
; (a > 0) (8.78)

is used. The probability density of the existence of the particle at (t, z) is,

|Ψ(t, z)|2 = 1√
2πσz

exp

[
− (z − βt)2

2σ2
z

]
; σz = 1

2σp
. (8.79)

This formula indicates that the particle exists only at around z ∼ βt with spacial
spread σz . This means that the particle is moving with the velocity β. This is called
the wave packet. At the beginning of this discussion, we assumed that the state has
momentum spread σp and in the end we obtained a wave packet with spacial spread
σz . The relation between the momentum and spacial spreads is

σpσz = 1/2. (8.80)

Therefore, if the momentum spread is wide, the spatial spread is narrow, and vice
versa. This corresponds to the uncertainty principle.

8.4.3.1 Derivation of Wave Packet Oscillation

Equation (4.34) shows the probability that νμ is produced at the space-time x = 0
and it changes to νe at the space-time x . The integrand of Eq. (4.35) can explicitly
be written as

I = 1√
2πσz

∫ ∞

−∞

[
e−(z−β2t)2/2σ2

z + e−(z−β1t)2/2σ2
z

− 2e−((z−β2t)2+(z−β1t)2)/4σ2
z cos(Δkz − ΔEt)

]
dt. (8.81)

The first two integrands can be integrated using the relation,

1√
2πσz

∫ ∞

−∞
e−(z−βi t)

2/2σ2
z dt = 1

βi
∼ 1. (8.82)

The power of the exponential function in the third integrand can be expressed as the
quadratic function of the time t,

(z − β2t)2 + (z − β1t)2 = 2β2

(
t − β

β2
z

)2

+ (Δβ)2

2β2
z2, (8.83)

http://dx.doi.org/10.1007/978-4-431-55462-2_4
http://dx.doi.org/10.1007/978-4-431-55462-2_4
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where β = β1+β1
2 , β2 = β21+β22

2 and Δβ = β1 − β2. The integration of the third
integrant can be performed as

∫ +∞

−∞
e−((Δz2)2+(Δz1)2)/4σ2

z cos(ΔkL − ΔEt)dt

= exp

⎛
⎝− (Δβ)2z2

8σ2
z β2

⎞
⎠∫ ∞

−∞
exp

⎛
⎝− β2

2σ2
z

(
t − β

β2
z

)2
⎞
⎠ cos(Δkz − ΔEt)dt

= σz

√
2π

β2
cos

[(
Δk − β

β2
ΔE

)
z

]
exp

[
− 1

8β2

[(
ΔE

σk

)2

+
(

Δβz

σz

)2
]]

∼ σz
√
2π cos [(Δk − ΔE) z] exp

[
−1

8

[(
ΔE

σk

)2

+
(

Δβz

σz

)2
]]

, (8.84)

where β ∼ 1, β2 ∼ 1, β/β2 ∼ 1 − (Δβ)2/4 ∼ 1 are used. Finally, the integration
(8.81) is

I ∼ 2

(
1 − cos [(Δk − ΔE) z] exp

[
−1

8

[(
ΔE

σk

)2

+
(

Δβz

σz

)2
]])

. (8.85)

8.5 Three Flavor Neutrino Oscillation Probabilities

In this appendix, we will derive the probabilities of the three flavor neutrino oscil-
lations. In Sect. 8.5.1, the general probabilities are expressed by the mixing matrix
elements Uα j . In Sect. 8.5.2, specific probabilities are expressed using the standard
mixing parameters θi j and δ. In Sect. 8.5.3, the probabilities near the two oscillation
maximums are approximated for the practical handling of the data and in Sect. 8.5.4,
important oscillation formulas with the matter effect are summarized.

8.5.1 Derivation of Three Flavor Oscillation Formula

We start with the oscillation probability formula (4.88),

Pνα→νβ =
∑
j,k

�
αβ
k j e

i2�k j , (8.86)

where

�
αβ
k j = UαkU∗

βkU∗
α jUβ j , and �k j = Δm2

k j L

4E
. (8.87)

http://dx.doi.org/10.1007/978-4-431-55462-2_4
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Equation (8.86) can be separated into the CP-odd and CP-even terms by using the
unitarity of the mixing matrix and the symmetry between k > j and k < j , as
follows:

Pνα→νβ = (
∑
j=k

+
∑
k> j

+
∑
k< j

)�
αβ
k j ei2�k j =

∑
j

|Uα j |2|Uβ j |2 + 2
∑
k> j

�[�αβ
k j e2i�k j ].

(8.88)
From the relations below,

∑
k j

�
αβ
k j =

∑
k

UαkU∗
βk

∑
j

U∗
α jUβ j = (δαβ)2 = δαβ

and (8.89)∑
k j

�
αβ
k j = (

∑
k= j

+
∑
k> j

+
∑
k< j

)�
αβ
k j =

∑
j

|Uα j |2|Uβ j |2 + 2
∑
k> j

�[�αβ
k j ],

the following equation can be obtained,

∑
j

|Uα j |2|Uβ j |2 = δαβ − 2
∑
k> j

�[�αβ
k j ]. (8.90)

Therefore, the oscillation probability (8.88) becomes,

Pνα→νβ = δαβ − 2
∑
k> j

�[�αβ
k j (1 − e2i�k j )] = δαβ − 4

∑
k> j

sin�k j ℑ[�αβ
k j ei�k j ].

(8.91)
Since,

�
αβ
k j ei�k j = (�[�αβ

k j ] + iℑ[�αβ
k j ])(cos�k j + i sin�k j ), (8.92)

the probability (8.91) can be written as

Pνα→νβ = δαβ − 4
∑
k> j

�[�αβ
k j ] sin2 �k j − 2

∑
k> j

ℑ[�αβ
k j ] sin 2�k j . (8.93)

This expression is often used in text books.

Using the relation �
βα
k j =

(
�

αβ
k j

)∗
, the probability of oscillation for the reversed

direction is

Pνβ→να = δβα − 4
∑
k> j

�[�βα
k j ] sin2 �k j − 2

∑
k> j

ℑ[�βα
k j ] sin 2�k j

= δαβ − 4
∑
k> j

�[�αβ
k j ] sin2 �k j + 2

∑
k> j

ℑ[�αβ
k j ] sin 2�k j .

(8.94)
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From CPT invariance, there is a relation Pνα→νβ = Pνβ→να and the oscillation
formula of antineutrinos is

Pνα→νβ = Pνβ→να

= δαβ − 4
∑
k> j

�[�αβ
k j ] sin2 �k j + 2

∑
k> j

ℑ[�αβ
k j ] sin 2�k j . (8.95)

This is equivalent to reverse the sign of imaginary number in the equation, δ → −δ.

8.5.2 Complete Oscillation Formulas

The mixing matrix is parametrized by θ12, θ23, θ13 and δ as follows:

U =
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13

⎞
⎠ . (8.96)

The complete oscillation formulas expressed by the mixing angles are

Pνe→νe = 1 − sin2 2θ13(c212 sin
2 �31 + s212 sin

2 �32) − c413 sin
2 2θ12 sin2 �21,

(8.97)

Pνμ→νμ = (c213 sin
2 2θ23 + s423 sin

2 2θ13) sin2 �32

+ (s212c213 sin
2 2θ23 + c212s423 sin

2 2θ13 + cδs223c13 J123)(sin
2 �31 − sin2 �32)

+
(
sin2 2θ12(c223 − s223s213)

2 + s213 sin
2 2θ23(1 − c2δ sin

2 2θ12)
+ cδs13(c223 − s223s213) sin 4θ12 sin 2θ23

)
sin2 �21,

(8.98)

and

Pνμ→νe = s223 sin
2 2θ13(c

2
12 sin

2 �31 + s212 sin
2 �32)

+ cδc13 J123
2

(sin2 �31 − sin2 �32)

+ 1

4
(2s223s213 sin

2 2θ12 sin 2θ13 − J123(sin 2θ12 + 2cδs13 cos 2θ12)) sin
2 �21

+ 1

4
sδ J123(c13(sin 2�31 − sin 2�32) + s13 sin 2�21), (8.99)

where,
J123 = sin 2θ12 sin 2θ23 sin 2θ13. (8.100)
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Probabilities of other oscillation modes can be obtained from the above three prob-
abilities as

Pνμ→ντ = 1 − Pνμ→νμ − Pνμ→νe , (8.101)

Pνe→ντ = 1 − Pνe→νe − P∗
νμ→νe

, (8.102)

Pντ→ντ = 1 − Pντ→νμ − Pντ→νe

= Pνμ→νμ + Pνe→νe + Pνμ→νe + P∗
νμ→νe

− 1, (8.103)

where P∗
X is obtained by replacing δ → −δ in the formula of PX .

8.5.3 Approximated Oscillation Formulas Near the Oscillation
Maximums

The complete oscillation formulas derived in the previous sections are complicated
and may not be useful for practical analysis of the experimental data. In this section,
oscillation formulas near the oscillation maximums are simplified by ignoring higher
orders of the small parameters, s213 and |Δm2

21/Δm2
31|,

εm ≡ Δm2
21

Δm2
31

= �21

�31
∼ ±0.03, s213 ∼ 0.026. (8.104)

Since εm and s213 have similar smallness, approximation can be performed with

powers of εm and s213 . The following relation will be used,

c13 = 1 + O(s213), s13 = 1

2
sin 2θ13 + O(s313). (8.105)

8.5.3.1 Oscillations Around �31 Maximum

Since�21 = εm�31,�21 is small at |�31| ∼ O(1) and the following approximations
can be made.

sin 2�21 = sin 2εm�31 = 2εm�31 + O(ε3m),

sin2 �21 = sin2 εm�31 = 0 + O(ε2m).
(8.106)

�32 can be related to �31 using the relation �32 = �31 − �21 = (1 − εm)�31 as
follows:

sin 2�32 = sin 2�31 − 2εm�31 cos 2�31 + O(ε2m),

sin2 �32 = sin2 �31 − εm�31 sin 2�31 + O(ε2m).
(8.107)
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Weapply the approximations to the oscillation probability form (8.93). The second
term of the right hand side is,

�
⎡
⎣∑

k> j

�
αβ
k j sin2 �k j

⎤
⎦ = �

[
�

αβ
21 sin2 �21 + �

αβ
31 sin2 �31 + �

αβ
32 sin2 �32

]

∼ �
[
�

αβ
31 sin2 �31 + �

αβ
32 (sin2 �31 − εm sin 2�31)

]
(8.108)

= �
[
(�

αβ
31 + �

αβ
32 ) sin2 �31 − εm�31�

αβ
32 sin 2�31

]

= |Uα3|2(δαβ − |Uβ3|2) sin2 �31 − εm�31�[�αβ
32] sin 2�31 + O(ε2m),

where the relation,

�
αβ
31 + �

αβ
32 = Uα3U∗

β3(U
∗
α1Uβ1 + U∗

α2Uβ2) = Uα3U∗
β3(δαβ − U∗

α3Uβ3)

= |Uα3|2(δαβ − |Uβ3|2) ∈ �
(8.109)

is used. The third term of right hand side of Eq. (8.93) is

ℑ

⎡
⎣∑

k> j

�
αβ
k j sin 2�k j

⎤
⎦ = ℑ

[
�

αβ
21 sin 2�21 + �

αβ
31 sin 2�31 + �

αβ
32 sin 2�32

]

∼ ℑ
[
2εm�31�

αβ
21 + �

αβ
31 sin 2�31 + �

αβ
32 (sin 2�31 − 2εm�31 cos 2�31)

]

= ℑ
[
(�

αβ
31 + �

αβ
32 ) sin 2�31 + 2εm�31(�

αβ
21 − �

αβ
32 cos 2�31)

]
(8.110)

= 2εm�31ℑ
[
(�

αβ
21 + �

αβ
12 ) − �

αβ
12 − �

αβ
32 (1 − 2 sin2 �31)

]

= 2εm�31ℑ
[
−(�

αβ
12 + �

αβ
32 ) + 2�αβ

32 sin2 �31

]

= 4εm�31 sin
2 �31ℑ

[
�

αβ
32

]
+ O(ε2m).

By putting Eqs. (8.108) and (8.110) into Eq. (8.93), the approximated oscillation
probability is

Pνα→νβ(@�31) = δαβ − 4|Uα3|2(δαβ − |Uβ3|2) sin2 �31

+ 8εm�31 sin�31�[�αβ
32 ei�31 ] + O(ε2m).

(8.111)

Note that if �32 is used instead of �31 as the reference parameter, the formula
becomes slightly different,

Pνα→νβ(@�32) = δαβ − 4|Uα3|2(δαβ − |Uβ3|2) sin2 �32

− 8εm�31 sin�32�[�αβ
32 ei�32 ] + O(ε2m),

(8.112)
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Table 8.1 Summary of oscillations probabilities @�31. J123 = sin 2θ12 sin 2θ23 sin 2θ13
Mode and probability @�31

M: νe → νe, νe → νe

P: 1 − sin2 2θ13 sin2 �31 − ε2m�2
31 sin

2 2θ12 + O(s413)

M: νμ → νμ, νμ → νμ

P: 1 − (sin2 2θ23 − s223 sin
2 2θ13 cos 2θ23) sin2 �31

+ εm�31 sin 2�31(c212 sin
2 2θ23 − s223 J123 cos δ)

M: ντ → ντ, ντ → ντ

P: 1 − (sin2 2θ23 + c223 cos 2θ23 sin2 2θ13)
+ εm�31 sin 2�31(J123c223 cos δ + c212 sin

2 2θ23)
M: νμ → νe, νe → νμ

P: s223 sin
2 2θ13 sin2 �31 + εm�31 sin�31 J123 cos(�31 + δ)

M: νe → ντ, ντ → νe

P: c223 sin
2 2θ13 sin2 �31 − εm�31 sin�31 J123 cos(�31 − δ)

M: νμ → ντ, ντ → νμ

P: cos 2θ13 sin2 2θ23 sin2 �31 + εm�31 sin�31×(
J123(sin�31 sin δ − cos 2θ23 cos�31 cos δ) − 2c212 sin

2 2θ23 cos�31
)

where εm = Δm2
21/Δm2

32 this time. It is necessary to clearly specify which reference
parameter is used in the discussions.

The disappearance probability is,

Pνα→να(@�31) = 1 − 4 |Uα3|2 ((1 − |Uα3|2) sin2 �31

+ 4εm�31|Uα2|2|Uα3|2 sin 2�31) + O(ε2m).
(8.113)

The appearance probability is

Pνα→νβ �=να(@�31) = 4|Uα3|2|Uβ3|2 sin2 �31

+ 8εm�31 sin�31�[�αβ
32 ei�31 ] + O(ε2m).

(8.114)

From these formulas, the oscillation probabilities for various oscillation modes
can be calculated as summarized in Table8.1.

8.5.3.2 Oscillations Around �21 Maximum

Near the �21 oscillation maximum,

�32 ∼ �31 = �12/εm ∼ π/2εm ∼ 30, (8.115)
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and the energy spectra caused by �32 and �31 terms rapidly oscillate. If the energy
resolution is worse than |εm| ∼ 3%, the oscillation effect is averaged as

sin2 �32 ∼ sin2 �31 = sin2(�21/εm) → 1
2 ,

sin 2�32 ∼ sin 2�31 = sin 2(�21/εm) → 0.
(8.116)

The second term of the general oscillation probability formula (8.93) becomes,

4�
⎡
⎣∑

k> j

�
αβ
k j sin2 �k j

⎤
⎦ = 2�

[
(�

αβ
31 + �

αβ
32 ) + 2�αβ

21 sin2 �21

]

= 2|Uα3|2(δαβ − |Uβ3|2) + 4 sin2�21�
[
�

αβ
21

]
,

(8.117)

and the third term becomes

2ℑ

⎡
⎣∑

k> j

�
αβ
k j sin 2�k j

⎤
⎦ ∼ 2 sin 2�21ℑ[�αβ

32 ]. (8.118)

By putting (8.117) and (8.118) into Eq. (8.93), the oscillation probability formula
@�21 is obtained as

Pνα→νβ(@�21) ∼ δαβ(1 − 2|Uα3|2) + 2|Uα1|2|Uβ3|2 − 4 sin�21ℑ
[
�

αβ
21 ei�21

]
.

(8.119)

For the disappearance case, it is

Pνα→να(@�21) = 1 − 2|Uα3|2(1 − |Uα3|2) − 4|Uα1|2|Uα2|2 sin2 �21, (8.120)

Table 8.2 Oscillation probabilities at @�12. cδ = cos δ, sδ = sin δ are used

Mode and probability @�21

M: νe → νe, νe → νe

P: cos 2θ13(1 − sin2 2θ12 sin2 �21) + O(s413)

M: νe → νμ, νμ → νe

P: 1
2 s223 sin

2 2θ13 + c213 sin 2θ12 sin�21×((
(c223 − s223s213) sin 2θ12 + s12 sin 2θ23 cos 2θ12cδ

)
sin�21 + s13 sin 2θ23sδ cos�21

)
M: νe → ντ, ντ → νe

P: 1
2 c223 sin

2 2θ13 + c213 sin 2θ12 sin�21×((
(s223 − s223s213) sin 2θ12 − s12 sin 2θ23 cos 2θ12cδ

)
sin�21 − s13 sin 2θ23sδ cos�21

)
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and for the appearance case, it is

Pνα→νβ �=α(@�21) = 2|Uα3|2|Uβ3|2 − 4 sin�21ℑ
[
�

αβ
21 ei�21

]
. (8.121)

Using those equations, Pνe→νe(@�21), Pνe→νμ(@�21) and Pνe→ντ(@�21) are cal-
culated and the results are summarized in Table8.2.

8.5.4 Oscillation Formula with Matter Effect

The oscillation formulas with the matter effect with precision better than described
in Sect. 7.1 are complicate to derive and we borrow the results from the references
shown in the tables.

Tables8.3 and 8.4 summarize the important oscillation probabilities with the earth
matter effect.

For solar neutrinos, νe is generated in the sun and thematter effect at its generation
point and the density change along its path have to be taken into account. Table8.5
show a simple case which is derived in Sect. 6.2.

Table 8.3 Oscillation probabilities with matter effect at @�31 [4]

Mode and probability @�31

M: νe → νe, νe → νe

P̃: 1 − sin2 2θ13
sin2((1−ηC υ⊕)�31)

(1−ηC υ⊕)2
− ε2m sin2 2θ12 sin2(υ⊕�31)

υ2⊕
+ O(s413)

M: νμ → νe, νμ → νe

P̃: s223 sin
2 2θ13

sin2((1−ηC υ⊕)�31)

(1−ηC υ⊕)2
+ εm J123 cos(�31 + ηC δ)

sin(υ⊕�31)
υ⊕

sin((1−ηC υ⊕)�31)

1−ηC υ⊕
+ ε2mc223 sin

2 2θ12 sin2(υ⊕�31)

υ2⊕
+ O(εms213)

M: νμ → νμ, νμ → νμ

P̃: 1 − sin2 2θ23 sin2 �31 − s223 sin
2 2θ13

sin2((1−ηC υ⊕)�31)

(1−ηC υ⊕)2

+ sin2 2θ13 sin2 2θ23
2(1−ηC υ⊕)

(
sin�31 cos(υ⊕�31)

sin((1−ηC υ⊕)�31)

1−ηC υ⊕ − ηC υ⊕�31
2 sin 2�31

)
+ εmc212 sin

2 2θ23�31 sin 2�31 − εm J123cδ cos�31
sin(υ⊕�31)

υ⊕
sin((1−ηC υ⊕)�31)

1−ηC υ⊕
− εm J123

1−ηC υ⊕ cos 2θ23cδ sin�31

(
ηC υ⊕ sin�31 − sin(υ⊕�31)

υ⊕ cos((1 − ηC υ⊕)�31)
)

Table 8.4 Oscillation probabilities with matter effect @�12 [5]

Mode and probability @�21

M: νe → νe, νe → νe

P̃: cos 2θ13
(
1 − sin2 2θ12

(1−ηC υ⊕ cos 2θ12)2
sin2((1 − ηC υ⊕ cos 2θ12)�21)

)
+ O(s413)

http://dx.doi.org/10.1007/978-4-431-55462-2_7
http://dx.doi.org/10.1007/978-4-431-55462-2_6
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Table 8.5 Oscillation probabilities of solar neutrinos with matter effect

Mode and probability of solar neutrino oscillation

M: νe → νe

P̃: 1
2

(
1 + cos 2θ12(cos 2θ12−υ�(0))√

(cos 2θ12−υ�(0))2+cos2 2θ12

)

υ�(0) is the charge current weak potential at the neutrino generation point. From Eq. (6.60)

8.6 Oscillation with Slowly-Changing Mixing Amplitude

In Sect. 6.2, neutrino oscillation in a slowly changing matter density is discussed. In
this appendix, we will solve the state equation (6.42), which has a form of

d

dt

(
Cα(t)
Cβ(t)

)
= −iω(t)

(− cos 2θ(t) sin 2θ(t)
sin 2θ(t) cos 2θ(t)

)(
Cα(t)
Cβ(t)

)
≡ −i�(t)

(
Cα
Cβ

)
.

(8.122)

In Sect. 6.2, ω is the neutrino oscillation frequency of the order of 104 rad/s, while
θ̇ is the rate of the change of the mixing angle caused by the change of the matter
density, which is of the order of 10 rad/s or less. Therefore, θ̇ is much smaller than
the oscillation frequency ω,

θ̇ 
 ω. (8.123)

In order to solve the Eq. (8.122), we define new parameters C± as follows:

(
C−(t)
C+(t)

)
≡

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
Cα(t)
Cβ(t)

)
≡ V(t)

(
Cα(t)
Cβ(t)

)
. (8.124)

The time differentiation of Cα and Cβ can be expressed by using C±(t) and V(t) as,

d

dt

(
Cα
Cβ

)
= d

dt

[
V†

(
C−
C+

)]
= V†

(
Ċ−
Ċ+

)
+ V̇†

(
C−
C+

)
. (8.125)

By putting Eqs. (8.124) and (8.125) into Eq. (8.122), the differential equations for
C± are obtained as follows:

(
Ċ−
Ċ+

)
= −

[
iV�V† + VV̇†

](
C−
C+

)
. (8.126)
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Here,

iV�V† = iω
(

cos θ − sin θ
sin θ cos θ

)(− cos 2θ sin 2θ
sin 2θ cos 2θ

)(
cos θ sin θ

− sin θ cos θ

)

= iω
(−1 0

0 1

)
,

and

VV̇† = θ̇
(
cos θ − sin θ
sin θ cos θ

)(− sin θ cos θ
− cos θ − sin θ

)
= θ̇

(
0 1

−1 0

)
. (8.127)

Therefore, Eq. (8.126) becomes

(
Ċ−
Ċ+

)
= −iω

( −1 −iθ̇/ω
iθ̇/ω 1

)(
C−
C+

)
. (8.128)

So far, the equation is exact.
Since there is a condition (8.123), Eq. (8.128) can be approximated to

(
Ċ−
Ċ+

)
= −iω(t)

(−1 0
0 1

)(
C−
C+

)
. (8.129)

Its solution is, (
C−(t)
C+(t)

)
=

(
ei�(t) 0
0 e−i�(t)

)(
C−(0)
C+(0)

)
, (8.130)

where �(t) = ∫ t
0 ω(t)dt. Finally, from the relation (8.124),

(
Cα(t)
Cβ(t)

)
=

(
cos θ sin θ

− sin θ cos θ

)(
C−(t)
C+(t)

)

=
(

cos θ sin θ
− sin θ cos θ

)(
ei� 0
0 e−i�

)(
cos θ − sin θ
sin θ cos θ

)(
Cα(0)
Cβ(0)

)

=
[
cos�(t) − i sin�(t)

(− cos 2θ(t) sin 2θ(t)
sin 2θ(t) cos 2θ(t)

)](
Cα(0)
Cβ(0)

)
.

(8.131)
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